Evaluation of Antiulcer Activity of *Chenopodium moquinianum* and Kaempferol Glycosides in Rats

Usama W. Hawas, Lamya A. Ibrahim, Abdel Razik H. Fargh, Jihan S. Hussein and Ihsan Elshiekh

Department of Phytochemistry and Plant Systematic, National Research Centre, Dokki, Cairo, Egypt
Department of Pathology, National Research Centre, Dokki, Cairo, Egypt
Department of Medical Biochemistry, National Research Centre, Dokki, Cairo, Egypt

Abstract: In our screening program for anti-ulcerogenic effect of plants, the flowering aerial parts of *Chenopodium moquinianum* Aellen (Chenoeaeae), an Egyptian plant grown in the western Mediterranean coastal region, were analyzed. Isolation of phenolic constituents was performed using chromatographic techniques. Eleven phenolic compounds, caffeic acid (1), rosmarinic acid (2), kaempferol (3), kaempferol 3-O-β-glucopyranoside (4), kaempferol 3-O-α-rhamnopyranoside (5), kaempferol 3,7,8-O-α-di-rhamnopyranoside (6), kaempferol 3-O-(4′-β-propylpyranosyl)-α-rhamnopyranoside-7-O-α-rhamnopyranoside (7), kaempferol 3-O-(4′-β-apiofuranosyl)-α-rhamnopyranoside-7-O-α-rhamnopyranoside (8), quercetin 3-O-β-glucopyranoside (9), rutin (10) and isorhamnetin 3-O-rutinoside (11) were isolated for the first time from *C. moquinianum*. The structures were established through chemical and spectral analysis. *In vivo* antiulcerogenic property of the *C. moquinianum* aqueous methanolic extract and the pure isolated Kaempferol glycosides (6) and (7) was investigated using ethanol-induced gastric ulcers in rats. Malondialdehyde (MDA) in rat gastric mucosa, reduced glutathione (GSH) and Superoxide dismutase (SOD) were determined and used as biochemical markers of the oxidative status. Histopathological examination of rat stomachs demonstrated that *C. moquinianum* extract and kaempferol glycosides (6) and (7) induced an increase in gastric mucus production and a reduction of the depth and severity of ethanol-induced mucosal lesions. Thus, the gastroprotective effect of *C. moquinianum* extract and kaempferol glycosides (6) and (7) was probably due to the increased mucus production and interference with oxidative stress development as evidenced by decreased gastric mucosal MDA and increased antioxidant parameters (SOD and GSH).

Key words: *Chenopodium moquinianum* • Anti-ulcerogenic effect and kaempferol glycosides

INTRODUCTION

Gastroduodenal ulcer is a very common global problem today [1]. Stress, smoking, nutritional deficiencies and ingestion of nonsteroidal-anti-inflammatory drugs (NSAIDs) and alcohol are all factors which increase the incidence of gastric ulcer [2]. In traditional medicine, several plants and herbs have been used to treat gastrointestinal disorders, including gastric and peptic ulcers [3-5].

Chenoeaeaeae is a large family comprising about 100 genera and 1500 species [6-8] shows an interesting geographical distribution determined by the fact that they are almost halophytic. Vegetables of this family generally contain 1-O-ferulyl-β-D-glucose [9]. Plants of the genus *Chenopodium* have been reported to have therapeutic and edible properties [10-12]. In the folk medicine, *Chenopodium* species are widely used as a sedative, antihysteric, antispasmodic, antirheumatic and enmenagogue. Infusion of leaves is used as digestive, carminative, stimulant, stomachic, antiasthmatic and diuretic [13]. Also the essential oils in *Chenopodium* species were found to be responsible for the antihelmintic properties and considered being valuable compounds used as antifungal [14]. Previous phytochemical studies on genus *Chenopodium* have demonstrated different groups of secondary metabolites of which the most important are lipids [15], carbohydrates [16], flavonoids [17], terpenes and steroids [18].

Corresponding Author: Dr. Usama Hawas, Phytochemistry and Plant Systematic Department, National Research Centre, Dokki-12311, Cairo, Egypt
Thus, it was deemed of interest to study the phytochemical investigation of phenolic compounds (1-11) from the aqueous methanol extract of the flowering aerial parts of *Chenopodium moquinianum* and to evaluate the gastroprotective activity and the antioxidant effect of the crude extract and the major pure isolated compounds, kaempferol glycosides (6) and (7) in rats.

MATERIALS AND METHODS

General: UV/Vis: Shimadzu UV-visible recording spectrophotometer model-UV 240 (NRC, Egypt). 1H-NMR spectra: Varian Unity Inova 500 and 300 (500 and 300 MHz); 13C-NMR spectra: Varian Unity 500 (125 MHz) and Varian Unity 300 (75.4 MHz) (South Africa University and Germany). MS (Finnigian MAT SSQ 7000, 70 ev). Polyamide (MN-polyamide SC6, Machery Nagel, for column chromatography); Paper Chromatography (PC), Whatman No. 3 MM (46 × 57 cm); Sephadex LH-20 (Pharmacia Fine Chemicals) and Solvent mixtures, BAW (n-butanol:acetic acid:water 4:1.5 upper phase) were used.

Plant Material: Flowering aerial parts of *Chenopodium moquinianum* were collected on spring mornings from the Egyptian Mediterranean coast, 90 km west of Alexandria in March 2007. The plant was identified by Prof. Salwa Kawashy, Department of Phytochemistry and Plant Systematic, National Research Centre. Voucher specimen was kept in the herbarium of the National Research Center (CAIRC).

Extraction and Isolation: The ground-dried aerial parts of *C. moquinianum* plant was extracted with 70% methanol by percolation until exhaustion, the extract was filtered and the solvent was evaporated under reduced pressure at a low temperature until dryness. The extract was defatted with petroleum ether and applied to a polyamide column using water/methanol mixtures of decreasing polarities as eluent. Each fraction was subjected separately to preparative paper chromatography (3 mm) using BAW, 15% acetic acid/water and water as eluents. The separated bands were scraped off and eluted with 70% methanol to get the pure compounds (1-11), which were further purified by repeated Sephadex LH-20 column using methanol/water and methanol.

Chemical Characterization of the Pure Isolated Compounds

Caffeic Acid (1): white powder, PC *Rf* 0.80 (BAW) and 59 (15% HOAc), UV *λ*max (MeOH): 218, 244, 298, 324, 1H-NMR (DMSO-d6, 300 MHz): δ 9.82 (2H, br, 2OH), 7.41 (1H, d, *J* = 16 Hz, H-7), 7.05 (1H, d, *J* = 2 Hz, H-2), 6.94 (1H, d, *J* = 8 and 2 Hz, H-6), 6.76 (1H, d, *J* = 8 Hz, H-5), 6.18 (1H, d, *J* = 16 Hz, H-8).

Rosmarinic Acid (2): white powder, *Rf* 0.85 (BAW) 64 (HOAc). [α]D 23 = -2.3 (c = 0.35, MeOH). UV (MeOH): *λ*max (nm): 225, 273, 328. 1H-NMR (DMSO-d6, 500 MHz): δ 7.56 (1H, d, *J* = 16 Hz, H-7), 7.18 (1H, d, *J* = 1.5 Hz, H-2), 6.97 (1H, d, *J* = 8 and 1.5 Hz, H-6), 6.82 (1H, d, *J* = 8 Hz, H-5), 6.73 (1H, d, *J* = 1.8 Hz, H-2), 6.67 (1H, d, *J* = 8 Hz, H-5), 6.58 (1H, d, *J* = 8 and 1.8 Hz, H-6), 6.28 (1H, d, *J* = 16 Hz, H-8), 5.16 (1H, dd, *J* = 7 and 5 Hz, H-8), 2.96 (2H, m, 7-CH2). EI-MS: 360, 198, 194, 177, 164. (-)ESI-MS: *m/z* (%) = 359 ([M-H]-100), (-)ESI-MSMS: *m/z* (%) = 359 ([M-H]-100).

Kaempferol (3): yellow powder, PC *Rf* 0.82 (BAW) and 8 (15% HOAc); EI-MS: *m/z* 286, UV *λ*max (MeOH): 260, 366; (NaOMe): 267, 317, 406; (AlCl3): 262, 299, 310, 367, (AlCl3/HCl): 263, 268, 302, 344; (NaOAc): 274, 382; (NaOAc/H3BO3): 267, 368. 1H-NMR (DMSO-d6, 500 MHz): Δ 12.5 (1H, s, 5-OH), 8.05 (2H, d, *J* = 8 Hz, H-2, 6), 6.91 (2H, d, *J* = 8 Hz, H-3, 5), 6.45 (1H, d, *J* = 2.2 Hz, H-8). 6.15 (1H, d, *J* = 2.2 Hz, H-6).

Kaempferol 3-O-β-glucopyranoside (Astragalin) (4): yellow amorphous powder, PC *Rf* 0.57 (BAW), 0.11 (H2O) and 0.12 (5% HOAc). 1H NMR: *δ* = 12.5 (s, 1H, 5 OH), 8.0 (d, *J* = 8 Hz, 2H, H-2, 6), 6.82 (d, *J* = 8 Hz, 2H, H-3, 5), 6.40 (d, *J* = 2.2 Hz, 1H, H-8), 6.15 (d, *J* = 2.2 Hz, 1H, H-6), 5.5 (d, *J* = 7.5 Hz, 1H, H-1').

Kaempferol 3-O-α-rhamnopyranoside (5): yellow powder, PC *Rf* 0.62 (BAW) and 36 (15% HOAc), UV *λ*max (MeOH): 260, 346; (NaOMe): 274, 327, 401; (AlCl3): 274, 304, 349, 396; (AlCl3/HCl): 274, 345, 394; (NaOAc): 274, 305; 392; (NaOAc/H3BO3): 267, 352. 1H-NMR (DMSO-d6, 500 MHz): Δ 7.82 (2H, d, *J* = 8.5 Hz, H-2, 6), 6.91 (2H, d, *J* = 8.5 Hz, H-3, 5), 6.44 (1H, d, *J* = 2.2 Hz, H-8), 6.24 (1H, d, *J* = 2.7 Hz, H-6), 5.5 (1H, s, H-1'), 1.12 (3H, d, *J* = 5.8 Hz, CH3-rhamnose).

Kaempferol 3-O-α-di-Rhamnopyranoside (6): yellowish needle crystals, m. p. 201-204°C, PC *Rf* 0.56 (BAW) and 50 (15% HOAc). UV *λ*max (MeOH): 265, 343; (NaOMe): 246, 387; (AlCl3): 274, 299, 360, 433; (AlCl3/HCl): 271, 359, 431; (NaOAc): 265, 357; (NaOAc/H3BO3): 265, 344. 1H-NMR (DMSO-d6, 500 MHz): Δ 7.75 (2H, d, *J* = 8.5 Hz, H-2, 6), 6.89 (2H, d, *J* = 8.5 Hz, H-3, 5), 6.76 (1H, d, *J* = 2 Hz, H-8), 6.44 (1H, d, *J* = 2 Hz, H-6), 5.53 (1H, s, H-1'), 5.27 (1H, s, H-1''), 1.12 (3H, d, *J* = 5.8 Hz, CH3-rhamnose).
0.79 (3H, d, J = 6 Hz, CH₃-rhamnose). ¹³C-NMR: δ 178.8 (C-4), 162.5 (C-7), 161.8 (C-5), 161 (C-4), 158.6 (C-2), 156.9 (C-9), 135.4 (C-3), 131.6 (C-2,6′), 121.2 (C-1,1′), 116.3 (C-3′,5′), 106.6 (C-10), 102.7 (C-1′), 100.3 (C-6), 99.2 (C-1″), 95.4 (C-8), 72.4 (C-4′), 71.9 (C-2′,4′), 71.5 (C-3′,2′), 71.1 (C-5′), 70.9 (C-3′″), 70.6 (C-5′″), 18.8 (C-6″), 18.3 (C-6′″).

Kaempferol 3-O-(4-β-xylpyranosyl-α-rhamno)pyranoside-7-O-α-rhamno-pyranoside (7): pale yellow crystal, m.p. 230-233°C, PC Rf 28 (BAW) and 60 (15% HOAc). UV λmax (MeOH): 265, 344, (NaOAc): 265, 388, (ACl): 274, 299, 347, 394, (ACl/ACl): 274, 340, 394, (NaOAc): 265, 352, (NaOAc/HBO₂): 265, 346. ¹H-NMR (DMSO-d₆, 500 MHz): δ 12.7 (1H, s, 5-OH), 7.78 (2H, d, J = 8.2 Hz, H-2′,6′), 6.95 (2H, d, J = 8.2 Hz, H-3′,5′), 6.75 (1H, d, J = 2 Hz, H-8), 6.45 (1H, d, J = 2 Hz, H-6), 5.55 (1H, s, H-1′), 5.39 (1H, s, H-1″), 4.19 (1H, d, J = 8 Hz, H-1‴′), 1.14 (3H, d, J = 6 Hz, CH₃-rhamnose), 0.85 (3H, d, J = 6 Hz, CH₃-rhamnose). ¹³C-NMR (DMSO-d₆, 125 MHz): δ 178 (C-4), 161.7 (C-7), 160.9 (C-5), 160.5 (C-4′), 157.9 (C-2′), 156.1 (C-9), 134.5 (C-3), 130.4 (C-2,6′), 120.1 (C-1′), 115.5 (C-3′,5′), 106.4 (C-1″′), 105.7 (C-10), 100.9 (C-1″), 99.4 (C-6), 98.5 (C-1″), 94.6 (C-8), 80.5 (C-4′), 79.1 (C-3′), 76.3 (C-2′), 73.7 (C-2″,2‴′), 71.7 (C-3″,2′′), 70.6 (C-5″), 70.4 (C-3″), 69.3 (C-5″), 70.1 (C-4″), 69.3 (C-5″″), 17.9 (C-6″), 17.4 (C-6″″).

Negative FAB-Ms m/z: 709 [M-H]⁺ (100%), 563 [M-H-rhamnose]⁻ (55%).

Quercetin 3-O-β-glucoside (Isoquercitin) (9): yellow amorphous powder, PC Rf 0.47 (BAW), 0.12 (H₂O) and 0.45 (15% HOAc). (-) ESI-MS: m/z 630 [M-H]-, 1H-NMR: δ = 12.6 (6H, 5-OH), 7.55 (d, J = 1.2 Hz, 1H, H-2′), 7.55 (d, J = 8 Hz, 1H, H-6′), 6.85 (d, J = 8 Hz, 1H, H-5′), 6.38 (d, J = 2 Hz, 1H, H-8), 6.18 (d, J = 2 Hz, 1H, H-6′), 5.43 (d, J = 7.5 Hz, 1H, H-1′′), 1.14 (C-NMR: δ = 178 (C-4), 161.5 (C-7), 162.9 (C-5), 157.4 (C-5′), 157 (C-2′), 149 (C-4′), 145 (C-3′), 134 (C-3′′), 122.5 (C-1′), 121.5 (C-6′), 117 (C-5′″), 116.2 (C-2′″), 105 (C-10), 103 (C-1″′), 99.8 (C-6), 94.8 (C-8), 78 (C-5″), 77.5 (C-3″), 75 (C-2″), 71 (C-4″), 62 (C-6″).

Rutin: Quercetin 3-O-rutinoside: Quercetin 3-O-α-rhamnosyl (1′′′3′″)-β-glucoside (10): yellow amorphous powder, PC Rf 0.55 (BAW) and 0.64 (15% HOAc). (-) ESI-MS: m/z 670 [M-H]-, (+) ESI-MS: m/z 633 [M+Na]+; (+) ESI-MS/MS: m/z 633, 487 [M+2rhamnose]+, 330 [M+quercetin+Na]+. UV λmax (MeOH): 257, 266, 358, (NaOAc): 272, 328, 408, (ACl): 271, 299, 402, (ACl/ACl): 268, 298, 364, 400, (NaOAc): 273, 324, 389, (NaOAc/HBO₂): 261, 379. ¹H-NMR: δ = 12.5 (s, 1H, 5-OH), 7.5 (d, J = 8 Hz, 2H, H-2′,6′), 6.8 (d, J = 8 Hz, 1H, H-5′), 6.35 (d, J = 2 Hz, 1H, H-8), 6.15 (d, J = 2 Hz, 1H, H-6′), 5.34 (d, J = 7.5 Hz, 1H, H-1″), 4.38 (d, J = 1.2 Hz, 1H, H-1′′″), 1.1 (d, J = 6 Hz, 1H, CH₃-rhamnose).

Isorhamnetin 3-O-rutinoside: Isorhamnetin 3-O-α-rhamnosyl (1′′′3′″)-β-glucoside (11): yellow amorphous powder, PC Rf 0.45 (BAW) and 0.61 (15% HOAc). UV λmax (MeOH): 255, 264, 357, (NaOAc): 271, 327, 413, (ACl): 269, 273, 300, 367, 401, (ACl/ACl): 268, 273, 299, 360, 398, (NaOAc): 273, 320, 392, (NaOAc/HBO₂): 258, 360. ¹H-NMR: δ = 7.95 (d, J = 2 Hz, 1H, H-2′), 7.76 (d, J = 8 Hz, 1H, H-6′), 7.08 (d, J = 8 Hz, 1H, H-5′), 6.41 (d, J = 2.2 Hz, 1H, H-8), 6.19 (d, J = 2.2 Hz, 1H, H-6′), 5.25 (d, J = 7.5 Hz, 1H, H-1″), 4.52 (d, J = 1.2 Hz, 1H, H-1′′″), 1.34 (s, 3H, 3-OCH₃), 1.14 (d, J = 6 Hz, 1H, CH₃-rhamnose). ¹³C-NMR: δ = 179.5 (C-4), 165.7 (C-7), 163.2 (C-2), 159.1 (C-5), 158.7 (C-9), 151 (C-4′), 148.5 (C-3′), 135.8 (C-3), 124.2 (C-6′″), 123.3 (C-1″), 116.2 (C-5′), 114.9 (C-2′), 106.3 (C-10), 104.7 (C-1″′), 102.9 (C-1″″), 100.1 (C-6), 95.1 (C-8), 78.4 (C-5″″), 77.9 (C-3″), 76.1 (C-2″), 74.1 (C-4″), 72.3 (C-4″), 72.3 (C-2″), 71.8 (C-3″), 70 (C-6″), 68.8 (C-5″), 57 (3-OCH₃), 18.2 (CH₃-rhamnose).

Experimental Animals: Adult Female Sprague–Dawley rats weighing 120-150 g were used for this study. The animals were obtained from the Lab Animal House, National Research Centre, Cairo, Egypt. The animals were
acclimatized for one week in an animal room where the temperature was maintained at 22 ± 3°C and there was a 12-h light: 12-h dark cycle. All animals were deprived of food for 18 h before induction of ulcer and were allocated to different experimental groups. The animals had free access to food and water unless stated otherwise. All animals received humane care in compliance with the ethics in the use of animals issued by the National Research Centre.

Experimental Design: The experiment was performed according to the method of Morimoto et al. [19]. The animals were divided into six groups, each consisting of six rats. Group 1 represented the control group, which received distilled water orally. Groups 3, 4, 5 and 6 received *C. moquinum* aqueous methanolic extract and isolated compounds (5) and (6) (800 mg/kg) and Ranitidine (40 mg/kg), respectively. One hour after treatment, all rats of gastric groups 2, 3, 4, 5 and 6 received 1mL of 99.5% ethanol to induce ulcer. One hour later, the animals were sacrificed with an over-dose of diethyl ether. The abdomen of each rat was dissected and the stomach was slightly taken out. Then the oesophagus was tied as a knot nearest the cardia by a surgical suture. From the duodenum side, 10 ml of 10% formalin solution was injected into the stomach. The distended stomach was immediately tied on the pyloric sphincter using another surgical suture to avoid leakage of the formalin solution.

Measurement of Gastric Mucosal Damage: The distended stomach was removed from the abdomen, inflated with 10 ml of 10% formalin solution and immersed in the same solution to fix the outer layer of the stomach. Each stomach was then dissected along the greater curvature, rinsed with tap water to remove gastric contents and blood clots and examined under a dissecting microscope (20 × 6.3) to assess the formation of ulcers. The sum of length (mm) of all lesions for each stomach was used as the ulcer index (UI) and the inhibition percentage was calculated by the following formula:

\[
\text{Inhibition} \% = \frac{\text{UI control} - \text{UI treated}}{\text{UI control}} \times 100.
\]

Histological and Histochemical Methods: The stomach of the rats submitted to gastric ulcers was fixed in 10% formalin for 24 h at 4°C. The samples were routinely processed for embedding in paraffin and cut into 7μm-thick sections that were stained with periodic acid-Schiff (PAS) [20] and hematoxylin eosin [21]. The samples were analyzed with a Leica microscope in association with Leica Qwin 500 Software (Leica-England) in Pathology Department, National Research Centre.

Biochemical Analysis: The role of oxidative stress in gastric lesions of all groups was evaluated. For this end, 0.5 g tissue (Stomach tissue) was treated with 4.5 ml of phosphate buffer. The mixtures were homogenized on ice for 15 min. Homogenates were filtered and centrifuged at 4°C, then; these supernatants were used for determination of antioxidant and oxidative stress parameters.

Malondialdehyde (MDA): The extent of gastric MDA (as a product of lipid peroxidation) was estimated using the method described by Ohkawa et al. [22].

Superoxide Dismutase (SOD) Activity: Stomach SOD estimation was based on the generation of superoxide radicals producing γ xanthine and xanthine oxidase, which reacts with nitro blue tetrazolium (NTB) to form formazan dye [23]. SOD activity was then measured at 560 nm by the degree of inhibition and was expressed as mmol/min/g tissue.

Reduced Glutathione (GSH): The amount of stomach GSH was measured according to the method described by Tashima et al. [21]. Absorbance was measured at 412 nm. The results of GSH level in stomach were expressed as nmol/g tissue.

Statistical Analysis: Results were expressed as means ± standard errors (SE). The statistical difference between the treated group and that of the control was calculated by using ANOVA and Student’s t-test. The degree of significance was set at p < 0.05.

RESULTS AND DISCUSSION

Preliminary screening of the aqueous methanolic (25%) extract of the flowering aerial parts of *Chenopodium moquinum* by paper chromatography indicated the presence of mixture of phenolic compounds. The concentrated extract was fractionated over polyamide column using water/methanol mixtures of decreasing polarities.

Eleven known phenolic compounds (Fig. 1) were isolated and purified by standard methods. Compounds (1) and (2) were found to exhibit chromatographic properties, fluorescent blue spots on
Fig. 1: Phenolic compounds isolated from *Chenopodium moquinianum*

1: \[\text{Compound } 1 \]
2: \[\text{Compound } 2 \]

3: \[\text{R} = \text{H} \]
4: \[\text{R} = \text{glucose} \]
5: \[\text{R} = \text{Rhamnose} \]

6: \[\text{R}_1 = \text{H} \]
7: \[\text{R}_1 = \text{Xylose} \]
8: \[\text{R}_1 = \text{Apiose} \]

9: \[\text{R}_1 = \text{H}, \quad \text{R}_2 = \text{glucose} \]
10: \[\text{R}_1 = \text{H}, \quad \text{R}_2 = \text{rutinoside} \]
11: \[\text{R}_1 = \text{CH}_3, \quad \text{R}_2 = \text{rutinoside} \]

Fig. 2: Selected HMBC correlations for compounds 7 and 8
paper chromatograms (PC) under UV light, changing to bright canary yellow colour on fuming with ammonia, results of FeCl₃ colour reaction (intense green) and UV spectral analysis in MeOH typical for caffeic acid and its esters [25]. Flavonoid compounds (3-11) were detected by spraying its spots on PC with alcoholic aluminum chloride where compound (3) appeared as a yellow spot under UV light and compounds (4-11) appeared as dark purple spots, changing to yellow when exposed to ammonia vapour [26]. Chemical investigations; complete acid hydrolysis for O-glycosides and hydrogen peroxide oxidation for triglycosides (7) and (8) were carried out and followed by paper co-chromatography with authentic samples to identify the hydrolytic flavonoid glycoside products whether aglycones and sugar moieties. The structures of the isolated phenolic compounds were determined from UV, MS and NMR spectral data. One-dimension (H- and ¹³C-) NMR spectroscopy were used to elucidate the structure of compounds (1-6) and (9-11) while the structure of compounds (7) and (8) were elucidated by 1D- and 2D-NMR (HHCOSY, HSQC and HMBC) to determine the linkage between the sugar moieties.

The isolated phenolic compounds were identified as caffeic acid (1) [27], rosmarinic acid (2) [28], kaempferol aglycone (3) [26], kaempferol 3-O-β-glucopyranoside (4) [29], kaempferol 3-O-α-rhamnopyranoside (5) [29], kaempferol 3,7-O-α-diarhamnopyranoside (6) [30], isoquercitrin (9) [26], rutin (10) [30] and isorhamnetin 3-O-rutinoside (11) [26,30].

Chemical and spectral analysis of compound (7) showed consistency with the presence of compound (6) and xylose as additional sugar moiety. HSQC experiment was first employed to determine the direct H/C correlation and assigned protonated carbons. The anemic protons of the rhamnose moieties at δ₆ 5.55 (H-1") and 5.39 (H-1") were correlated with δ₇ 100.9 (C-1") and 98.5 (C-1") respectively and the anemic proton of xylose at δ₆ 4.19 (H-1") was correlated with δ₇ 106.4 (C-1"). In the HMBC spectrum, the rhamnose protons H-1" and H-1" showed correlations with δ₇ 134.5 (C-3) and 161.7 (C-7), respectively, while xylose proton H-1" was correlated with δ₇ 80.5 (C-4") indicated that xylose is a terminal sugar through ether linkage (1-4) with rhamnose moiety on C-3. Thus, compound 7 was identified as kaempferol 3-O-(4β-xylopyranosyl)α-rhamnopyranoside-7-O-α-rhamnopyranoside [31,32].

Compound 8 exhibited similar spectral and chemical analysis of compound 7 with the exception that it contains apiose instead of xylose as a sugar moiety. In 2D-NMR of 8, the anomeric carbon (C-1") of apiose moiety was assigned at δ₇ 106.6 through the HSQC correlation with the anomic proton (H-1") at δ₆ 5.31, this proton was correlated in the HMBC spectrum with C-4" of rhamnose moiety on C-3 of kaempferol aglycone. Thus, compound 8 was identified as Kaempferol 3-O-(4β-apiofuranosyl)-α-rhamnopyranoside-7-O-α-rhamnopyranoside [31,32].

Chenopodium species were considered slightly toxic and have no ulcerogenic and irritation effects in the stomach of rats at 800 mg/kg b.w [17]. Therefore, the possible antiulcerogenic effect of the C. moquinianum aqueous methanolic extract and the pure isolated kaempferol glycosides (6) and (7) was investigated using ethanol induced ulcer model in rats and Ranitidine as a reference drug.

The results of this study showed that the intragastric administration of absolute ethanol produced an intense gastric mucosal damage, which was indicated by the biochemical, morphometrical, histopathological and histochemical examinations.

The biochemical investigation of the tissue of the stomach of rats administered with ethanol showed a significant elevation in MDA levels (Table 1), while GSH and SOD levels were significantly decreased.

No mucosal lesions were detected in rats which were not treated with ethanol. The intragastric administration of ethanol caused gastric ulcer areas in rats Ucer index (28.1 ± 1.7mm) (Table 2).

Table 1: Effects of C. moquinianum extract and kaempferol glycoside (6) and (7) and Ranitidine on MDA, GSH and SOD activities in tissue of stomach

<table>
<thead>
<tr>
<th>Groups</th>
<th>MDA nmol/g tissue</th>
<th>GSH mol/mg tissue</th>
<th>SOD mol/mg tissue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>21±0.5</td>
<td>3.25±0.05</td>
<td>125.5±2.8</td>
</tr>
<tr>
<td>Ethanol</td>
<td>59±0.9 *</td>
<td>2.35±0.02 *</td>
<td>91.5±1.2 *</td>
</tr>
<tr>
<td>C. moquinianum extract</td>
<td>28±0.7 **</td>
<td>2.85±0.06 **</td>
<td>117.5±2.6 **</td>
</tr>
<tr>
<td>Kaempferol glycoside (5)</td>
<td>32±0.8 **</td>
<td>3.06±0.03 **</td>
<td>118.5±2.9 **</td>
</tr>
<tr>
<td>Kaempferol glycoside (6)</td>
<td>31±0.6 **</td>
<td>2.75±0.09 **</td>
<td>119.5±4.6 **</td>
</tr>
<tr>
<td>Ranitidine</td>
<td>23±0.6 **</td>
<td>3.35±0.04 **</td>
<td>124.0±3.5 **</td>
</tr>
</tbody>
</table>

Data represented as mean±standard errors and Ethanol group were compared with the control group and other groups.

* Significant at p < 0.05 according to control.
** Significant at p < 0.05 according to ethanol group.

Table 2: Effects of C. moquinianum extract and Kaempferol glycosides (6) and (7) and Ranitidine on gastric ulcers in rats

<table>
<thead>
<tr>
<th>Groups</th>
<th>Ulcer index (mm)</th>
<th>Protection (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ethanol</td>
<td>28±1±1.7</td>
<td>-</td>
</tr>
<tr>
<td>C. moquinianum extract</td>
<td>9.3±0.37 *</td>
<td>66.90</td>
</tr>
<tr>
<td>Kaempferol glycoside (5)</td>
<td>8.4±0.77 *</td>
<td>70.10</td>
</tr>
<tr>
<td>Kaempferol glycoside (6)</td>
<td>7.9±0.41 *</td>
<td>71.88</td>
</tr>
<tr>
<td>Ranitidine</td>
<td>4.3±0.37 *</td>
<td>84.69</td>
</tr>
</tbody>
</table>

Data represented as mean±standard errors and Ethanol group were compared with the other groups.

* Significant at p < 0.05 in comparison with ethanol group.

Fig. 3: A) Stomach of control rat, B) Stomach of rat treated with ethanol (H&E X150),
C) Stomach of control rat and D) Stomach of rat treated with ethanol (PAS X150)

Fig. 4: A) Stomach of rat treated with ethanol and Rantidine, B) Stomach of rat treated with ethanol and crude
extract, C) Stomach of rat treated with ethanol and kaempferol glycoside (6) and D) Stomach of rat treated
with ethanol and kaempferol glycoside (7) (H&E X150)

Fig. 5: A) Stomach of rat treated with ethanol and Rantidine, B) Stomach of rat treated with ethanol and crude
extract, C) Stomach of rat treated with ethanol and kaempferol glycoside (5) and D) Stomach of rat treated
with ethanol and kaempferol glycoside (6) (PAS X150)
Histopathological examination of the stomach sections revealed that absolute ethanol led to extensive mucosal lesions. These lesions were various; some extended into the mucosa involving the surface mucous cells at different depths and some extended to the cells lining the gastric pits or into the gland area. Mucosa was highly necrotized, large segment of necrotic mucosa was partially detached and was floating in lumen and there were submucosal hemorrhage and necrotic focuses (Fig. 3B), when compared with non-treated rats (Fig. 3A). The histochemical examination indicated that mucous production in the zones of the lesions was reduced (Fig. 3C) while the zones without lesions were preserved and mucus was even increased as compared with the control one (Fig. 3D). Similar results were found by Szabo et al. [33] and Kwiicien et al. [34].

Ethanol produces gastric lesions by direct action on the mucosa [33], impairment of gastric defensive factors and enhancement of lipid peroxidation products [35]. Ethanol is also able to induce direct oxidative damage against gastric mucosal tissues. It increases hydroxyl radical production and lipid peroxidation in the gastric mucosa [36].

The formation of gastric mucosal lesions by necrotizing agents, such as ethanol, has been reported to involve the depression of these gastric defensive mechanisms [37]. Oral treatment with ethanol causes focal edema, necrosis and submucosal hemorrhage, as well as circulatory disturbances [38]. The formation of gastric mucosal lesions following ethanol administration involves several mechanisms which reduce the flow of gastric blood, thereby contributing to the development of hemorrhage and necrosis and the solubilization of mucus constituents in the stomach. These actions resulted in an increased flow of Na⁺ and K⁺, increased pepsin secretion and a loss of H⁺ ions and histamine into the lumen [33].

On the other hand, animals treated with *C. moquinianum* extract, kaempferol glycosides (6) and (7) and Ramitidine as a reference drug showed significant reduction in the incidence and severity of ulceration in ethanol-induced ulcer and significant reduction in lipid peroxidation levels as compared with the ethanol group. Antioxidant parameters (SOD & GSH) and lipid peroxidation (MDA) levels were found to be closer to the normal level in treated groups of animals compared to the control group.

Pre-treatment with *C. moquinianum* extract, pure isolated kaempferol glycosides (6) and (7) and the reference drug (Ramitidine) significantly reduced the ulcer area by 66.90%, 70.10%, 71.88% and 84.69%, respectively, compared with that given ethanol only.
CONCLUSIONS

The present study clearly demonstrates that C. moschata extract and pure isolated kaempferol glycosides, Kaempferol 3,7-O-α-di-rhamnopyranoside (6) and Kaempferol 3-O-β-xylopyranosyl-(1→4)-α-rhamnopyranoside-7-O-α-rhamno-pyranoside (7) have antioxidant effect, gastro-protective and healing properties against ethanol induced oxidative stress and ulcer. The effects observed on chronic gastric lesions suggest influences on free-radical-scavenging properties and an increase of mucus production.

REFERENCES

