
World Engineering & Applied Sciences Journal 8 (2): 92-98, 2017
ISSN 2079-2204
© IDOSI Publications, 2017
DOI: 10.5829/idosi.weasj.2017.92.98

Corresponding Author: A. Sarumathi, ME, CSE, RMD Engineering College, Kavarapettai, India.
92

Detecting High Level System Problems by
Analyzing the Error Logs Using Spark

A. Sarumathi and P. Ezhumalai1 2

ME, CSE, RMD Engineering College, Kavarapettai, India1

HOD, CSE, RMD Engineering College, Kavarapettai, India2

Abstract: The biggest challenge for most Ecommerce business is to collect, store and organize data from
multiple data sources. Ecommerce services create huge amount of console log files which are unstructured and
unfriendly. These challenges make it difficult for operators to understand log messages and extract the errors
from the huge log files. This information is required to detect the performance problems. Existing disk based
systems like Map Reduce cannot offer low latency services due to the high access latency to hard disks.
Our project uses a novel approach for console log mining from the field of big data analytical methods and the
in memory techniques to automatically monitor and detect the abnormal execution traces from the console log
files The project aims to extract the useful information from the huge console logs efficiently using the in
memory techniques such as Spark in a Hadoop Ecosystem. The huge unstructured log files are analyzed using
the memory based techniques where the data is cached in memory rather than loading it on the disks as the
traditional Hadoop systems which leads to a faster analysis and mine the useful data.

Key words: Big data Analytics Hadoop Spark MapReduce

INTRODUCTION and operators. One significant problem is that as the

Ecommerce growth in today’s world is phenomenal to process goes far beyond the level that can be handled
and the amount of users and data generated are huge. manually and thus there is a huge demand for automatic
The biggest challenge for most Ecommerce businesses is processing of monitoring data. At these scales,
to collect, store and organize data from multiple data “performance failures” are common and may even indicate
sources. There’s certainly a lot of data waiting to be serious impending failures [1].
analyzed and it is a daunting task for some E-commerce Operators would therefore like to be notified of such
businesses to make sense of it all. Big Data paves the way problems quickly. Despite the existence of a variety of
for more organized data and enables business owners or monitoring tools, the monitoring already available in every
marketing managers to track and better understand a application is the humble console log which is usually
variety of information from many different sources. ignored. Console logs are convenient to use and reflect
To analyze such a large volume of data, big data analytics the developers’ original ideas about what events are
is typically performed using specialized software tools valuable to report, including errors, execution tracing,
and applications for predictive analytics, data mining, or statistics about the program’s internal state.
text mining, forecasting and data optimization. But exploiting this information is difficult because console
Today’s large-scale Ecommerce services run in large logs are both machine-unfriendly (they usually consist of
server clusters in datacenter and cloud computing unstructured text messages with no obvious schema or
environments. These system architectures enable highly structure) and human-unfriendly (each developer logs
scalable Internet services at a relatively low cost. information useful for his own debugging, but large
However, detecting and diagnosing problems in such systems consist of many software modules developed by
systems bring new challenges for both system developers different people and log messages from different

system scales, the amount of information operators need

World Eng. & Appl. Sci. J., 8 (2): 92-98, 2017

93

modules must often be correlated to identify a problem). Log Parsing: The method presented in [4] can eliminate
These challenges make it difficult for operators to most of the ad-hoc guessing in parsing free text logs.
understand log messages and extract the errors from the The method first analyzes the source code of the program
huge error log files. generating the console log to discover the “schemas” of

High-level cluster programming models like all log messages. Specifically, it examines the printing
MapReduce and Dryad have been widely adopted to statements in the source code (e.g. printf) and performs
process the growing volumes of data in industry and the type analysis on the arguments to these statements.
science. These systems simplify distributed programming The technique distinguishes the parts of each message
by automatically providing locality-aware scheduling, that are constant strings from the parts that refer to
fault tolerance and load balancing, enabling a wide range identifiers such as program variables or program objects
of users to analyze big datasets on commodity clusters. with high accuracy
Most current cluster computing systems are based on the They first convert a log message from unstructured
acyclic data flow model where records are read from a text to a data structure that shows the message type and
stable storage and written back to the stable storage. a list of message variables in (name, value) pairs to get
But there are many applications that are not supported by possible log message template strings from either the
this acyclic flow of data. One such class of applications is source code or program binaries and match these
that reuse the working set of data across multiple parallel templates to each log message to recover its structure
operations. Those are applications that use the iterative (that is, message type and variables). Their log parsing
algorithms commonly used in machine learning and graph method consists of two steps: the static source code
applications. Our work focuses on using a new framework analysis and the runtime log parsing. The static source
called SPARK that support these applications and retain analysis step not only extracts all log printing statements
the fault tolerance of Map Reduce. Spark offers a from the source code, but also tries to infer types of
distributed memory abstraction called resilient distributed variables contained in the log messages. Thus we can
datasets (RDDs) [2]. discover the message format even with the complex

The project aims to extract the useful information type hierarchies in modern object oriented languages.
from the huge console logs efficiently using the The runtime log parsing step uses information retrieval
techniques such as Spark in a Hadoop Ecosystem. techniques to “search” through all possible strings
The huge unstructured log files are analyzed using the in extracted from template for best matching “schemas” for
memory techniques where the data is cached in memory each log message. The process is stateless, so it is easy
rather than loading it on the disks as the traditional to parallelize and implement in a data stream processor in
Hadoop systems which leads to a faster analysis and mine the online setting document [5].
the useful data. From the survey conducted we find that
a Hadoop cluster running on over 200 machines tends to Identifying Event Traces: The detection technique in [6]
yield 24 million lines of logs during a two-day period. relies on analyzing traces, which are sets of events related

Our project proposes a novel approach for console to the same program object. For example, a set of
log mining from the field of big data analytical methods to messages referring to the opening, positioning,
automatically monitor and detect the abnormal execution writing and closing of the same file would constitute an
traces from the console log files. Through these event trace for that file. Within the event stream, however,
techniques we have found that, when analyzing the logs events of different types and referring to different sets of
based on our model we can accurately extract the errors variables are all interleaved. One way to extract traces
and speed up the analysis process by 10x times than a from the stream is to group by certain field of the events,
Hadoop model. The results are significant because that a typical operation for stream data processing.
error information is not only used by the developers to The challenge of using the grouping key automatically is
improve their application performance but also by data handled. The method described in [5], automatically finds
scientists, operators to improve their business the grouping key from historical log data by discovering

Console Log Preprocessing: In this section we review objects manipulated by the program. All events reporting
some of the log preprocessing techniques described in [3] the same identifier constitute an event trace for that
which we also used. identifier. This “group-by” process also occurs in a

which message variables correspond to identifiers of

World Eng. & Appl. Sci. J., 8 (2): 92-98, 2017

94

stream processor. A group-by stream processor that fault-tolerant: checkpointing the data or logging the
converts the single interleaved event stream into many updates made to it. In large-scale data analytics
event traces, one for each identifier is implemented. checkpointing the data is expensive: it would require
They assume the event traces to be independent from replicating big datasets across machines over the
each other. datacenter network, which typically has much lower

Representing the Event Traces: The event traces are [8] and it would also consume additional storage
converted to a numerical representation suitable for (replicating data in RAM would reduce the total amount
applying PCA detector. In [5], each whole event trace is that can be cached, while logging it to disk would slow
represented by a message count vector (MCV), which has down applications). Consequently, we choose to log
a structure analogous to the bag of words model in updates. However, logging updates is also expensive if
information retrieval, where the “document” is the group there are many of them. Consequently, RDDs only
of messages in an event trace. The MCV is an support coarse-grained transformations, where we can log
N-dimensional vector where N is the size of the set of all a single operation to be applied to many records, series of
useful message types across all groups (analogous to all transformations are used to build an RDD (i.e., its lineage)
possible “terms”) and the value of vector element yi is the and use it to recover lost partitions.
number of times event i appears in a group RDDs are well-suited for data-parallel batch analytics
(corresponding to “term frequency”). For example, applications, including data mining, machine learning
in a system consisting of four event types, opening, and graph algorithms, because these programs
reading, writing and closing, a trace of (opening, reading, naturally perform the same operation on many records.
closing) will be represented in MCV as (1,1,0,1) RDDs would be less suitable for applications that
while (opening, writing, writing) can be represented as asynchronously update shared state. RDDs can be stored
(1,0,2,0). Message count vectors are a compact in memory between queries without requiring replication.
representation of event traces, but two problems preclude Instead, they rebuild lost data on failure using lineage:
their direct use in online scenario. First, they do not carry each RDD remembers how it was built from other datasets
any time information, so they cannot be used to detect (by transformations like map, join or groupBy) to rebuild
operations that are anomalous due to events being itself. RDDs allow Spark to outperform existing models by
spaced too far apart in time (i.e. slowness). Second, up to 100x in multi-pass analytics [2]. RDDs can be only
the original MCVs are constructed based on the entire created through deterministic operations called
event traces which could span arbitrarily long time. transformations. Examples of transformations include map,
This is not possible in an online setting. We use the MCV filter, group by and join.
to represent a session, which we define as a subset events
in an event trace representing a single logical operation in Comparing RDD with Distributed Shared Memory:
the system and have predictable bound in its duration. The applications that uses Distributed shared memory

Technical Background: We propose a System for address space.DSM is a very general abstraction but
console log mining using spark which is a inmemory difficult to implement efficiently on commodity clusters.
technique[7] that executes faster than traditional disk The main difference between RDDs and DSM is that
based system. The main abstraction of spark is Resilient RDDs can only be created i.e. written through bulk
Distributed datasets[1] (RDD) which we will see in brief. transformations, while DSM allows reads and writes to

Resilient Distributed Datasets (RDD): The main goal of that perform bulk writes, but allows for more efficient fault
RDD is to provide abstraction to support applications that tolerance. The advantage of RDD is, not to worry about
reuse the results in multiple parallel operations at the same the check pointing as it can recover using the lineage.
time it should preserve the properties of MapReduce such Furthermore, only the lost partitions of an RDD need to be
as fault tolerance and locality aware scheduling and recomputed upon failure and they can be recomputed in
scalability. Out of our desired properties, the most difficult parallel on different nodes, without having to roll back the
one to support efficiently is fault tolerance. In general, whole program. One interesting observation is that RDDs
there are two options to make a distributed dataset also let a system tolerate slow nodes (stragglers) by

bandwidth than the memory bandwidth within a machine

(DSM) read and write to an arbitrary location in a global

each memory location. This restricts RDDs to applications

World Eng. & Appl. Sci. J., 8 (2): 92-98, 2017

95

running backup copies of tasks, as in Map Reduce. Broadcast Variables: If a large read-only piece of data
Backup tasks would be hard to implement with DSM as (e.g., a lookup table) is used in multiple parallel
both copies of a task would read/write to the same operations, it is preferable to distribute it to the workers
memory addresses [9]. only once instead of packaging it with every closure.

The other benefits are, in bulk operations on RDDs a Spark lets the programmer create a “broadcast variable”
runtime can schedule task based on data locality to object that wraps the value and ensures that it is only
improve performance. Partitions that do not fit in RAM copied to each worker once.
can be stored on disk and will provide similar performance
to current data flow systems Accumulators: These are variables that workers can only

Parallel Operations: Several parallel operations can be driver can read. They can be used to implement counters
performed on RDDs: as in MapReduce and to provide a more imperative syntax

Reduce: Combines dataset elements using an associative type that has an “add” operation and a “zero” value.
function to produce a result at the driver program Due to their “add-only” semantics, they are easy to make

Collect: Sends all elements of the dataset to the driver
program. For example, an easy way to update an array in Spark Programming: Spark provides the RDD
parallel is to parallelize, map and collect the array abstraction through a language integrated API in Scala

Foreach: Passes each element through a user provided oriented language for the Java VM. On top of Spark, Spark
function. This is only done for the side effects of the SQL, Spark Streaming, MLlib and GraphX are built for
function which might be to copy data to another system SQL-based manipulation, stream processing, machine
or to update a shared variable learning and graph processing, respectively. Spark

RDD Transformations and Actions: RDD transformations to run workers as shown in Fig. 1. The driver defines one
are lazy operations that define a new RDD, while actions or more RDDs and invokes actions on them. The workers
launch a computation to return a value to the program or are long-lived processes that can cache RDD partitions in
write data to external storage. The various RDD RAM as Java objects. RDDs themselves are statically
transformations available in Spark is given detailed in [1]. typed objects parameterized by an element type. For
Examples of actions include count (which returns the example, RDD[Int] is an RDD of integers. By transforming
number of elements in the RDD), collect which returns the an existing RDD a dataset with elements of type A can be
elements themselves) and save (which outputs the RDD transformed into a dataset with elements of type B using
to a storage system). In addition to these operators, an operation called flat Map which passes each element
users can ask for an RDD to be cached. Furthermore, through a user-provided function by changing the
users can get an RDD’s partition order, which is persistence of an existing RDD. By default, RDDs are lazy
represented by a Partitioner class and partition another and ephemeral. That is, partitions of a dataset are
RDD according to it. Operations such as groupByKey, materialized on demand when they are used in a parallel
reduceByKey and sort automatically result in a hash or operation (e.g., by passing a block of a file through a map
range partitioned RDD [10].

Programmers invoke operations like map, filter and
reduce by passing closures (functions) to Spark. As is
typical in functional programming, these closures can
refer to variables in the scope where they are created.
Normally, when Spark runs a closure on a worker node,
these variables are copied to the worker. However,
Spark also lets programmers create two restricted types of
shared variables to support two simple but common usage
patterns Fig. 1: Spark Execution Overview

“add” to using an associative operation and that only the

for parallel sums. Accumulators can be defined for any

fault-tolerant.

[4]. Scala is a statically typed functional and object-

developers write a driver program that connects to cluster

World Eng. & Appl. Sci. J., 8 (2): 92-98, 2017

96

Fig. 2: Overview of console log mining DataFRame API [12].

function) and are discarded from memory after use. val df = textFile.toDF("line");
A user can change the persistence of RDD through a val errors =df.filter(col("line").like("%error%"));
cache action. It is a hint that says that it should be kept in errors.collect().foreach(println);
memory so that it will be reused. However if there is no
enough memory to be cached it will be recomputed [11]. Line 1 creates the DataFrame from the RDD. line 2

Propsed System: Compared to the online approaches for
log mining which cannot handle a huge amount of data, Frequent Pattern Mining: We also mine the frequent
we propose a model that emphasizes the use of spark for patterns.. Frequent pattern is defined to be a session and
detecting problems with the large scale systems. Consider its duration distribution such that: 1) the session is
a website is experiencing the errors and the operator frequent in many event traces; 2) most (e.g., 99.95th
wants to know the cause of the error. He is in need to percentile) of the session’s duration is less than Tmax,
search terabytes of console log to find the Cause of the a user-specified maximum allowable detection latency
problem. Our model is capable of handling these huge (the time between an event occurring and the decision
unstructured log files efficiently. Fig. 2 gives the overview of whether the event is normal or abnormal).
of the console log mining. As mentioned in section II the Condition (1) guarantees that the pattern covers
console logs are preprocessed and are transferred to the common cases so it is likely to be a normal behavior.
Hadoop Cluster for further processing Condition (2) guarantees the pattern can be detected in

Mining Using Spark: Using Spark and RDDs, for frequent patterns. These patterns are used to filter
the operator can load just the Error messages from the out normal events in the online phase. We cannot
logs into RAM across a set of Nodes and query them apply generic frequent sequence mining techniques
interactively. We also use spark SQL which can because 1) sessions many interleave in the event traces
effectively mine the log files in lightning speed. The (e.g. two reads happen at the same time) thus
following is the sample code to mine the console log “transaction” boundaries are not clear. We need to
using scale simultaneously segment an event trace into sessions and

lines = spark.textFile("hdfs://...") sessions can have large variations, fixed time windows
errors = lines.filter(_.startsWith("ERROR")) will not give satisfactory segmentation, which suggest
errors.cache() that we shall model the distribution of durations. 2)

Line 1 defines an RDD backed by an HDFS file where unsynchronized clock in a distributed system,
we have the preprocesed log files as a collection of lines which preludes the use of techniques requiring total
of text), while line 2 derives a filtered RDD from it. Line 3 ordering of events. In our algorithm described below,
asks for errors to be cached. we use frequent patterns to tolerate the poor time-based

Spark SQL is a Spark module for structured data segmentation accuracy resulting from random session
processing. Unlike the basic Spark RDD API, interleaving. The frequent patterns, once discovered,
the interfaces provided by Spark SQL provide Spark with can be used to deinterleave the events to estimate a clean
more information about the structure of both the data and duration model.

the computation being performed. Internally, Spark SQL
uses this extra information to perform extra optimizations.
A DataFrame is a distributed collection of data organized
into named columns. It is conceptually equivalent to a
table in a relational database or a data frame in R/Python,
but with richer optimizations under the hood. DataFrames
can be constructed from a wide array of sources such as:
structured data files, tables in Hive, external databases,
or existing RDDs. The following lines uses the spark

Filters the errors from the DataFrames.

a short time. We mine the archived data periodically

mine patterns. However, because the durations of

Events can be reordered in the traces because of

World Eng. & Appl. Sci. J., 8 (2): 92-98, 2017

97

PCA Anamoly Detection: To uncover the true anomalies
from this noisy data, we use a statistical anomaly
detection method, the PCA detector, which is shown to be
accurate in offline problem detection from console logs
and from many other systems, [13]. As with frequent
pattern mining, the goal of PCA is to discover the
statistically dominant patterns and thereby identify
anomalies inside data. PCA can capture patterns in
high-dimensional data by automatically choosing a
(smallset of) coordinates-the principal components-that
reflect covariation among the original coordinates.
Once we estimate these patterns from the archived and
periodically updated data, we use them to transform the
incoming data to make abnormal patterns easier to detect.
PCA detection also has a model estimation phase
followed by an online detection phase. In the modeling
phase, PCA captures the dominant pattern in a
transformation matrix PPT, where P is formed by the top
principal components chosen by PCA algorithm. Then in
the online detection phase, the abnormal component
of each message count vector y is computed as ya
= (I - PPT)y, i.e., ya is the projection of y onto the
abnormal subspace. The squared prediction error SPE =
kyak2 (squared length of vector ya) is used for detecting
abnormal events: We mark vector y as abnormal if SPE =
kyak2 > Q_, (5) where Q_ denotes the threshold statistic
for the SPE residual function at the (1-_) confidence level
[11]. Due to limitations of space, we refer readers
unfamiliar with these techniques to, [13] for details. In a
real deployment, the model can be updated periodically.
Note that because of the noisier data in this phase and the
workload dependent nature of the non-pattern data,
the model update period for PCA is usually shorter than
that for frequent pattern mining.

Experimental Setup: We evaluate our approach with real
logs from a 203-node Hadoop [1] installation of a large
scale Ecommerce website. Hadoop is an open source
implementation of the MapReduce framework for
large-scale parallel data processing. Ecommerce websites
is gaining popularity tremendously. So it is important to
understand its runtime behaviors, detect its execution
anomalies and diagnose its performance degradation
issues. To evaluate our approach we replayed the same
setof logs, containing over 24 million lines of log
messages with an uncompressed size of 2.4GB. The logs
were generated from 203 nodes running Hadoop for 48
hours, completing many standard MapReduce jobs such
as distributed sort and text scan. The average machine
load varies from fully utilized to mostly idle. The log

Table 1: Frequently occurring anomaly

1 Write exception client gives up
2 Write failed at beginning
3 Received block that does not belong to any file
4 Replication monitor timedout
5 Empty packet for block

contains 575,319 event traces, corresponding to 575,
319 distinct file blocks in Hadoop File. The two types
of false positives are 1. Normal background
migration and over replication. For example, falsepositive
over-replicating is due to a special application request
rather than a system problem. These are indeed rare
events only 368 occurrences across all traces
corresponding to rare but normal operations. These cases
are hard to handle with a fully unsupervised detector.
In order to handle these cases, we allow operators to
manually add patterns to encode domain-specific
knowledge. Our approach founds all the anomaly from the
logs. Some of the frequently occurring anomaly is given
in the Table1

We use Spark that has the lightning speed to process
the data which outperforms the traditional disk based
system. The following graph illustares the timing
comparison of proposed model and the other models [14].

Thus the proposed model is efficient both in terms of
time and accuracy. Our current work does not make any
change to the log generation code in the program. But we
can also aim to improve current console log generation
frameworks to allow more dynamic and fine granularity
control of individual message types. With such a
framework, we can do real-time control of console log
generation, which will enable us to further reduce the
overhead of generating unnecessary logs, while making
sure the interesting and important messages are kept in
the logs [15, 16].

CONCLUSION

Our goal is to find the needles in the haystack that
might indicate operational problems, without any manual
input. When given a huge unstructured log files we

World Eng. & Appl. Sci. J., 8 (2): 92-98, 2017

98

addressed the problem of extracting the useful error 6. Detecting Large-Scale System Problems by Mining
information. We proposed a new approach using Spark Console Logs Wei Xu EECS Department, Ling Huang
for finding the errors and tracking its details in a file which Intel Labs Berkeley Armando Fox EECS Department,
will help the development team to fix these errors in the David Patterson EECS Department, Michael I.
future and it will improve the performance of the large Jordan EECS and Statistics Department, UC Berkeley
scale system. The challenges of handling the 26 International Conference on Machine Learning,
unstructured and unfriendly log files are simplified. Our Haifa, Israel, 2010.
project’s approach for console log mining from the field of 7. Cheney, J., L. Chiticariu and W.C. Tan, 2009.
big data analytical methods and the in memory techniques Provenance in databases: Why, how and where,
automatically monitor and detect the abnormal execution Found. Trends Databases, 1: 379-474.
traces from the console log files. Through these 8. Hindman, B., A. Konwinski, M. Zaharia, A. Ghodsi,
techniques our work found that, when analyzing the logs A. DJoseph, R.H. Katz, S. Shenker and I. Stoica, 2010.
based on our model we can accurately extract the errors Mesos: Aplatform for fine-grained resource sharing
and speed up the analysis process by 10x times than a in the data center. Technical Report UCB/EECS-2010-
Hadoop model. The results are significant because that 87, EECS Department, University of California,
error information is used by the developers to improve Berkeley.
their application performance. This System would also 9. Scaling Spark in the Real World: Performance and
benefit data scientists, operators to improve their Usability by Michael Armbrust, Tathagata Das,
business. Aaron Davidson, Ali Ghodsi, Andrew Or, Josh

REFERENCES Matei Zaharia,Databricks Inc., MIT CSAIL.

1. Zaharia, M., M. Chowdhury, T. Das, A. Dave, J. Ma, org/hadoop/Powered By. Y. Bu, B. Howe,
M. McCauley, M.J. Franklin, S. Shenker and I. Stoica, M. Balazinska and M.D. Ernst.
2012. Resilient distributed datasets: A fault-tolerant 11. HaLoop, 2010. efficient iterative data processing on
abstraction for in-memory cluster computing, in Proc. largeclusters. Proc. VLDB Endow., 3: 285-296.
9 USENIX Conf. Netw. Syst. Des. Implementation, 12. Hall, D., 2008. A scalable language, anda scalableth

pp: 2. framework. http://www.scala-blogs.org/2008/09/
2. Zaharia, M., M. Chowdhury, M.J. Franklin, S. Shenker scalable-languageandscalable.html.

and I. Stoica, 2010. Spark: Cluster computing with 13. Hadoop Map/Reduce tutorial http.
working sets, in Proc. 2 USENIX Conf. Hot Topics 14. //hadoop.apache.org/common/docs/r0.20.0/maprednd

Cloud Comput., pp: 10. tutorial.html.
3. Shi, X., M. Chen, L. He, X. Xie, L. Lu, H. Jin, Y. Chen 15. Yu, Y., M. Isard, D. Fetterly, M. Budiu,

and S. Wu, 2014. Mammoth: Gearing hadoop U. Erlingsson, P.K. Gunda and J. Currey, 2008.
towards memory-intensive mapreduce applications, DryadLINQ: A system for general-purpose
IEEE Trans. Parallel Distrib. Syst., 99(1). distributed data-parallel computing using a high-level

4. Scala. http://www.scala-lang.org. language. In OSDI ’08, San Diego, CA.
5. Online System Problem Detection by Mining 16. Ko, S.Y., I. Hoque, B. Cho and I. Gupta, 2009.

Patterns of Console Logs Wei Xu_, Ling Huang, On availability of intermediate data in cloud
Armando Fox, David Patterson, Michael Jordan computations. In HotOS’09.
_EECS Department, UC Berkeley, Berkeley, CA, USA.

th

Rosen, Ion Stoica, Patrick Wendell, Reynold Xin,

10. Applications powered by Hadoop.http://wiki.apache.

