
World Engineering & Applied Sciences Journal 6 (2): 104-108, 2015
ISSN 2079-2204
© IDOSI Publications, 2015
DOI: 10.5829/idosi.weasj.2015.6.2.22148

Corresponding Author: Neha Gehlot, CSE Department, SGT University Gurgaon, Haryana, India.

104

A Class Cohesion Measure for Evaluation of Resuablity

Neha Gehlot and Ritu Sindhu

Department of CSE, SGT University Gurgaon, Haryana, India

Abstract: Class cohesion is considered as one of most important object-oriented software attributes. It is
defined as the degree of the relatedness of the members in a class. Based on instance variables usage criteria
the major existing class cohesion metrics are measured. It is only a special and a restricted way of capturing
class cohesion. We believe, as stated in many papers, that class cohesion should not exclusively be based on
common instance variables usage criteria. We introduce, in this paper, a new criterion, which focuses on
interactions between class methods and class instances. We developed a cohesion measurement tool for Java
programs and performed a case study on several systems. This paper provides an account of new measures
of cohesion developed to assess the reusability of Java classes. The obtained results demonstrate that our new
class cohesion metric, based on the proposed cohesion criteria, captures several pairs of related methods,
which are not captured by the existing cohesion metrics.

Key words: Metric Cohesion Reusability Inheritance Methods Variables

INTRODUCTION a class. They count the number of instance variables used

For some disciplines of software engineering share instance variables. We believe that it is only a
software metrics have become essential [Pressman01]. special way of capturing class cohesion, which is
Several software attributes (complexity, coupling, based on instance variables usage criteria. These metrics
cohesion, etc.). Are assessed using metrics in the field of have been experimented and widely discussed in the
software quality? They provide, therefore, an important literature [Basili96, Briand00, Chae98, Chidamber98,
assistance to developers and managers in order to assess ElEmam99 and Henderson-Sellers96]. Several studies
and improve software quality during the development have noted that the existing cohesion metrics fail in many
process. During the last decade Object technology has situations to properly reflect the cohesiveness of
been widely used in several areas. Cohesion refers to the classes [Kabaili00, Chae00]. According to many authors,
degree of the relatedness of the members in a component. they do not take into account some characteristics of
High cohesion is a desirable property of software classes, for example, sizes of cohesive parts as stated in
components. It is widely recognized that highly cohesive [Aman02] and connectivity among members as stated in
components tend to have high maintainability and [Chae00].
reusability [1] for the measurement of structure quality Yourdon and Constantine introduced cohesion in the
the cohesion of a component is measured. The cohesion traditional applications as a measure of the extent of
degree of a component is high, if it implements a single the functional relationships of the elements in a module.
logical function. They have described cohesion as a criterion for the

Several metrics have been proposed in the literature estimation of design quality. Grady Brooch describes high
in order to measure class cohesion in object-oriented functional cohesion as existing when the elements of a
systems. The major existing class cohesion metrics component (such as a class) all work together to provide
have been presented in detail and are categorized in [2]. some well-bounded behaviour [Booch94]. In the object
They are based on either instance variables usage or paradigm, a class is cohesive when its parts are highly
sharing of instance variables. These metrics capture class correlated. It should be difficult to split a cohesive class.
cohesion in terms of connections among members within A class with low cohesion has disparate and non-related

by methods or the number of methods pairs that

|E| - (|V| - 1)Co = 2.
(|V| - 1). (|V| - 2)

(1/a) 1 j a µ (Am) - mLCOM5 =
1 - m

Σ ≤ ≤

 1 j a µ (Am)Coho =
m.a

Σ ≤ ≤

World Eng. & Appl. Sci. J., 6 (2): 104-108, 2015

105

members. Cohesion can be used to identify the poorly Class Cohesion: Existing Metrics: Classes are
designed classes. Cohesion is an underlying goal to considered as the basic units of object-oriented software.
continually consider during the design process [3]. Classes should then be designed to have a good quality

Beyond these aspects, we believe that the existing [6]. However, improper modelling in the design phase,
metrics fail to reflect properly the properties of class particularly improper responsibilities assignment
cohesion, particularly in terms of related methods. decisions can produce classes with low cohesion. In order
They are based on restricted criteria and could lead to to assess class cohesion in object-oriented systems
unexpected values of cohesion in many situations. several metrics have been proposed in the literature. Most
We believe that class cohesion should not exclusively be of the proposed class cohesion metrics are inspired from
based on common instance variables usage as stated in the LCOM (Lack of Cohesion in Methods) metric defined
[4] and will have to go beyond this aspect by considering by Chid amber and Kemmerer [7]. Many authors have
the interaction patterns among class methods. We note redefined the LCOM metric as referenced in the following
that in many situations several methods are functionally paragraphs.
related together without sharing any instance variables.
We extended the existing criteria by considering different Class Cohesion: A New Measure: Class cohesion in
ways of capturing class cohesion. We introduce, in this our approach, as stated initially in [Badri95],
paper, a new criterion, which focuses on interactions refers essentially the relatedness of public
between class methods. We developed a cohesion methods of a class, which represent the functionalities
measurement tool for Java programs and performed a case used by its clients. It is defined in terms of the
study on several systems. The obtained results relative number of related public methods in the class.
demonstrate that our new class cohesion metric, based on The others methods of the class are included
the proposed cohesion criteria, captures several pairs of indirectly through the public methods. Our approach
connected methods, which are not captured by the is comparable to the one adopted by Baseman and
existing cohesion metrics [5]. Kang in.

Table 1: The major existing cohesion metrics.

Metric Definition

LCOM1 Lack of cohesion in methods. The number of pairs of methods in the class using no
Instance variables in common.

LCOM2 Let P be the pairs of methods without shared instance variables and Q be the pairs of Methods with shared instance variables.
Then LCOM2 = |P| - |Q|, if |P| > |Q|. If this Difference is negative, LCOM2 is set to zero.

LCOM3 Consider an undirected graph G, where the vertices are the methods of a class and there is an edge between two vertices
if the corresponding methods share at least one instance Variable.
Then LCOM3 = | connected components of G |

LCOM4 Like LCOM3, where graph G additionally has an edge between vertices representing Methods Mi and My, if Mi invokes
My or vice versa. Co Connectivity. Let V be the vertices of graph G from LCOM4 and E its edges. Then

LCOM5 Consider a set of methods {Mi} (I = 1, …, m) accessing a set of instance variables {Am}
(j = 1, a). Let µ (Am) be the number of methods that reference Am. Then

Coho

TCC Tight Class Cohesion. Consider a class with N public methods. Let NP be the maximum
Number of public method pairs: NP = [N * (N – 1)] / 2. Let NDC be the number of direct Connections between public methods.
Then TCC is defined as the relative number of Directly connected public methods. Then, TCC = NDC / NP.

LCC Loose Class Cohesion. Let NIC be the number of direct or indirect connections between Public methods. Then LCC is defined as
the relative number of directly or indirectly Connected public methods. LCC = NIC / NP.

World Eng. & Appl. Sci. J., 6 (2): 104-108, 2015

106

We have revised our initial definition of class capturing more properties of classes, particularly,
cohesion proposed in [Badri95] by extending the methods in terms of connections between methods. Two
invocation criterion in the one hand and introducing the public methods can be related by calling directly
concept of indirect usage of attributes defined by or indirectly, for instance, private (or protected)
Baseman and Kang in [8] in the other hand. We have also methods, which do not use any attribute of the class.
extended this concept to the methods invocation criterion. Such characteristics are captured in our cohesion

Direct Relation Between Methods: Two public methods As stated earlier, In OO programming, a class can
Mi and My may be directly connected in many ways: inherit the methods and attributes of other classes.
they share at least one instance variable in common For example, a class X can inherit the methods and
(UA relation), or interact at least with another method of attributes of other class Y if class X is the derived from
the class (IM relation), or both. It means that: Tami UA class Y. This notion of OO programming makes the class
My or Mimi n Imp . The maximum number of Y as a subset of class X. In other words; this phenomena
public methods pairs, as stated in [Badri95, Bieman95], adds methods and attributes to derived class X from the
is n * (n-1) / 2. base class Y. In our approach of measuring class

Indirect Relation Between Methods: However, two public methods of a class. We can see that the notion of
methods Mi and Mj can be indirectly related if they are inheritance may add new members (i.e. protected and
directly or indirectly related to a method Mk. The indirect public attributes and methods) in the derived class and
relation, introduced by Bieman and Kang in [Bieman95], may produce an effect on the value of cohesion for the
is the transitive closure of the direct relation. We use this derived class. For measuring the class cohesion, we will
concept in our approach for identifying the indirect add public and protected members of base class to the
related methods. Thus, a method M1 is indirectly sub class and we will treat such derived members similar
connected with a method Mk if there is a sequence of to other members of the class [10].
methods M1, M2, M3, …, Mk such that Mi is directly
connected to Mi+1 (i= 1, k-1)[9]. Class Cohesion reusability metric = K* [(MP+Vp)*IC]

There are public methods of the class C, class c is MP = total number of public methods
inherited by some other classes having their own public Vp = total number of public variables
methods. So the degree of cohesion in the class C based IC = No.of inherited classes
on the direct and indirect relations between its public
methods is measured. K is proportionality constant with a value 0.5

The new definition that we propose for class Using proportionality constant k the raw metrics
cohesion assessment seems to be more appropriate than values are empirically adjusted for calculation in
the others, particularly the ones supposed taking into order to map the metrics values into a scale from 0.0 to
account the interactions between methods. It allows <1.00 (0 ± 100%)

metric.

cohesion, we will use relatedness among the public

Implementation

World Eng. & Appl. Sci. J., 6 (2): 104-108, 2015

107

Test Case Analysis: Measure of cohesive metric is CONCLUSION
calculated as a measure of single functionality in a java
class the analysis shows measure of cohesion in the code.
Measure of the proposed metric that is cohesive metric is
calculated for several test cases and presented. It is
observed as the public methods in project increases, the
value of the metric increases to very high values due to
presence of high degree of cohesion thus enhancing
reusability measure within the code.

Cohesion has been claimed to improve reuse and
reusability, to fully measure productivity we may need
some effective means to measure the degree of cohesion.
We also need to measure cohesion in order to establish
the veracity of claims is made about it with respect to
reusability. It is the measurement of cohesion that is the
subject of this paper. In this paper, we present our attempt
to measure cohesion by means of methods used in a java
class. This is a technique which has been traditionally
used for understanding other forms of behaviour, such as
improving performance or determines the coverage of
test cases. We apply similar techniques in an attempt to
measure the cohesion that takes place during the
execution of an application. Thus in this paper cohesion
due to interactions between methods and variables is
taken as directly proportional to reusability factor which
is a quality factor and thus gave a cohesive reusability
present due to cohesion in a java class.

Table 2: Table measuring metrics

Project Class Cohesion Metric
Revenue Revenue Predictin. java 0.14

Revenue Test. java 0.83

Show quality Average.java 0.33
Averagetest.java 0.33

Turtle graphics Turtle.java 0.33
Turtletest.java 0.33

Pythagorean table Pythagorean.java FI
Pythagoreantest.java 0.16

Population growth Populationgrowth.java 0.1
Populationgrwothtest.java 0.16

Dice Rolling Dicerolling.java 0.1
Dicerollingtest.java 0.16

Barchart Barchart.java 0.03
Barcharttest.java 0.016

Code Signin.java 0.20
Signup.java 0.20
Testrun.java 0.20
Uploadfile.java 0.20

App Uploadnewfile.java 0.20
Beeper.java 0.03

Atm atm.java 0.01

In the compiler research literature and provide
important and relatively easily-computed information the
static metrics are quite commonly used. In this paper we
have focused on computing metrics as a means of
assessing the actual behaviour of a program. More
relevant views of the program to compiler and runtime
optimization developers can be provided to by this
information collected. In this paper both the compile time
runtime behaviour is calculated by measuring the runtime
and compile time cohesion which is associated with the
concept of method reusability to provide the resultant
proposed metric. The proposed metric is validated on a
java metric tool and results are validated through test
cases to ensure that the results are accurate and
validated. Thus providing with a cohesion measure in a
java class and scope to enhance the functionality and
reusability of a java code.

REFERENCE

1. Hristov Danail, Oliver Hummel, Mahmudul Huq and
Werner Janjic, 2012. Structuring Software
reusability Metrics for Component-Based Software
Development, ICSEA 2012: The Seventh
International Conference on Software Engineering
Advances.

2. Washizaki Hironori, Hirokazu Yamamoto and
Yoshiaki Fukazawa, 2003. A Metrics Suite for
Measuring Reusability of Software Components,
Proceedings of the 9 International Symposium onth

Software Metrics September, IEEE Computer Society,
Washington, DC, USA, pp: 211-223.

3. Gui, G. and P.D. Scott, 2008. New Coupling and
Cohesion Metrics for Evaluation of Software
Component Reusability, Proc. Of the Intern.
Conference for Young Computer Scientists,
pp: 1181-1186.

 4. Sagar Shrddha, N.W. Nerurkar and Arun Sharma,
2010. A soft computing based approach to estimate
reusability of software components, ACM SIGSOFT
Software Engineering Notes, 35(5): 1-5.

 5. Boxall, M.A.S. and S. Araban, 2006. Interface Metrics
for Reusability Analysis of Components,
Australian Software Engineering Conference
(ACWEC’04), Melbourne, Australia, pp: 40-50.

 6. Eun Sook Cho, Min Sun fim and Soo Dong Kim, 2005.
Component Metrics to Measure Component Quality,
Proceedings of the eighths Asia-Pacific Software
Engineering Conference, pp: 1530-1362/01.

World Eng. & Appl. Sci. J., 6 (2): 104-108, 2015

108

 7. Hummel O. and C. Atkinson, 2006. Using the Web as 9. Rotaru, O.P. and M. Dobre, 2009. Reusability Metrics
a Reuse Repository, Reuse of Off-the-Shelf for Software Components, In Proceedings of the
Components, Lecture Notes in Computer Science, ACS/IEEE 2005 International Conference on
Springer, 4039: 298-311. Computer Systems and Applications, pp: 24.

8. Poulin, J., 1994. Measuring Software Reusability, 10. Yingmei Li, Shao Jingbo and Xia Weining, 2012.
Proceedings of the 3rd International Conference on On Reusability Metric Model for Software
Software Reuse: Advances in Software Reusability, Component, Software Engineering and Knowledge
IEEE Computer Society Press, Los Alamitors, Engineering: Theory and Practice Advances in
pp: 126-138. Intelligent and Soft Computing, 114: 865-870.

