Land Suitability Evaluation for Important Crop Productions in Gypsiferous Soils of Bardsir Area in Kerman Province, Iran

Somaye Garkani Negad Mashizi, Ali Keshavarzi, Abbas Ahmadi and Hassan Etesami

1Department of Soil Science, Islamic Azad University, Karaj Branch, Iran
2Department of Soil Science, Tehran University, Iran
3Member of Scientific Board, Islamic Azad University, Arak Branch, Iran

Abstract: Bardsir is one of the most important agronomic productions in Kerman province, which some positions of it are extremely affected by gypsum. This research was performed to study properties of gypsiferous soils and land suitability evaluation for agronomic productions in the study area. At first, the land maps were studied, then 35 farmlands were chosen, they had gyspic horizon and were scattered in the total plain. Then one profile in each farm was described and catch the samples from all horizons. The total gypsum characteristics, using agricultural instruments and applying of different inputs were studied. Land characteristics for example: salinity, acidity, Sodium Adsorption Ratio (SAR), Cation Exchange Capacity (CEC), gypsum content, calcium carbonate content, texture and climate were used to classification of land suitability and land utilization types such as wheat, barley, alfalfa, maize, sugarbeet and potato were studied. Meanwhile, plant and climate tables were gathered by sys and givi. The results show that the maximum and average of soil gypsum was 31% and 12% respectively, it is one of the most limitation for crop production. According to key to soil taxonomy(2006), the gyspic and cambic horizons were classified in aridisols and entisols. Parent materials, climate, microrelief (topography), physiography and pendant shapes effect the gypsum formation in the studied area. Investigation and qualitative reviewing of lands show that land suitability have a range of changes in classes from S2 to S3 for wheat with the limitations of gypsum in soils and texture, from S2 to S3 for barley with the limitations of gypsum in soils and texture, from S2 to N2 and S3 to N2 for potato with the limitations of soil acidity and gypsum and S2 to N1 with the limitation of soil’s texture for sugarbeet, from S2 to N2 and S3 to N2 for alfalfa with the limitations of soil’s acidity and gypsum and topography and from S2 to N2 for onion with the limitations of soil’s gypsum and acidity, respectively. Researches show that the average of yield in different production in gyspic and non-gysiferous soils are different.

Key words: Gypsiferous soils • Land suitability • Bardsir

INTRODUCTION

In the first sight, soil has been defined as plant preservation environment. This definition is the most important one that has been existed for soil form the beginning of agriculture creation.

The Land contains all components of physical environment in an ecosystem that affect on land use capabilities. There characteristics include Climate, Topography, Soil, hydrology, vegetation, Geology, animal and plant population [1]. Inappropirate land use leads to inefficient exploitation of natural resources, destruction of the land resources, poverty and other social problems. Part of the solution to the land use problem is land evaluation in support of rational land use planning and appropriate and sustainable use of natural and human resources [2]. Land evaluation is concerned with the assessment of land performance for specific land utilization purposes and provides a rational basis for taking land use decisions based on analysis of relations between the land use and land, giving estimates of required inputs and predicted outputs [3,4].

Gypsiferous soils are soils that contain sufficient quantities of gypsum (calcium sulphate) to interfere with plant growth. Soils with gypsum of pedogenic origin are found in regions with ustic, xeric and aridic moisture regimes [5]. They are well represented in dry areas where sources for the calcium sulphate exist. They do not usually occur under wet climates. In most cases the gypsum is associated with other salts of calcium and salts of sodium and magnesium.

Gypsiferous soils are very variable and there are many factors that affect their properties in relation to plant growth. Gypsiferous soils can be productive and managed.
profitably if they are first studied properly. The effect of the chemical properties of gysiferous and calcareous soils on the growth of plants, both natural vegetation and crops and their mineral contents have been investigated by numerous authors. In the first American system of soil classification gysiferous soils are not separated from other soils. The soils of the dry areas are classified as Red Desert Soils equivalent to Argids, Calciorthids and Camborthids of the modern American system. The first system was elaborated from the classification of [6] after some redefinition. It was revised several times subsequently.

The performance of plants grown on shallow soils depends to a large extent on their root system, the gypsum content, the fertility level of the topsoil and the water availability during the growing season. In particular the presence of a hard impervious gypseous layer has a strong effect on crop production under irrigation. Percolating water dissolves gypsum and salts and stagnates at the top of the gypseous layer creating a perched water-table, often resulting in an accumulation of gypsum and salts. The resulting high water-table may rise to the soil surface leaving salts and gypsum. Under these conditions, the performance of crops will be affected by both gypsum and salinity. Gysiferous soils have been cultivated under dry farming systems for centuries mainly with cereal crops and small-grain legumes. Because of population pressure and recent technological developments in the use of underground waters some gysiferous soils are now irrigated. Under irrigation, new problems have arisen through the introduction of high-yielding crops especially those least tolerant of gypsum. The intensive leaching of nutrients, calcium solubilization from gypsum and the removal of exchangeable potassium and magnesium affect the productivity of gysiferous soils. The influence of the gypsum concentration in soils is comparable to that of calcium carbonate, except gypsum is more soluble and may cause dissolution pockets and successive development of a characteristic microrelief if the soils are irrigated. The general indices in Table 1 are suggested where soils and crops information are very limited.

Smith and Robertson [9] observe that yields of annual and perennial crops are depressed when grown on soils where the gypsum content of the root zone is higher than 25 percent. Thus, Barzanji [8] suggested the following parameters for annual crops where the indices were calculated according to the weighted average of the gypsum content of the upper 40 cm of the soil profile (Table 2). For perennial crops the weighted average of the gypsum content was calculated for the upper 100 cm of the soil, if no gypseous layer is present. If there is a gypseous layer the weighted average is calculated for soil above the gypseous layer only.

The above classification adopted by Barzanji was based on limited data, field observations and information given by Smith and Robertson [9]. In more recent studies, many annual and perennial crops are found to perform well in highly gysiferous soils; and the depth of the gypseous layer and the degree of its cementation determine to a large extent the irrigability of that type of soil.

Studies on gysiferous soils don’t have long antiquity and their background is returned to the second half of the twentieth century. These soils are considered among the unsuitable or with acute proportion soils agriculturally. A large amount of gypsum in soils have considerable extent in arid and semi-arid regions of the world. Gysiferous soils extent has been estimated about 85 million hectares in the world and these lands extent has been reported about 73 million hectares in the Middle East which 9.8 million hectares of that has been reported in Islamic Republic of Iran that about 124500 hectares of these lands are placed in Kerman. According to the features of these soils, their potentials are different for different applications. Such soils identify, is not only

<table>
<thead>
<tr>
<th>Gypsum content(%)</th>
<th>Gypsum indices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 0.3</td>
<td>0.9</td>
</tr>
<tr>
<td>0.3-10</td>
<td>1.0</td>
</tr>
<tr>
<td>10-25</td>
<td>0.85</td>
</tr>
<tr>
<td>25-50</td>
<td>0.60</td>
</tr>
</tbody>
</table>

Table 1: Rating Index on the Basis of Average Gypsum Content in the Upper 100 Cm of the Soil or to a Limiting Layer [7,8]

Table 2: Gypsum Indices for Annual Crops with Shallow Root System According to Their Gypsum Tolerance [8]

<table>
<thead>
<tr>
<th>Gypsum(%)</th>
<th>Crops that tolerate a high level of CaSO_4</th>
<th>Crops that tolerate some CaSO_4</th>
<th>Crops sensitive to CaSO_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 0.3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0.3-10</td>
<td>1.1</td>
<td>1</td>
<td>0.75</td>
</tr>
<tr>
<td>10-25</td>
<td>0.8</td>
<td>0.7</td>
<td>0.5</td>
</tr>
<tr>
<td>>25</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
</tr>
</tbody>
</table>
valuable from the viewpoint of soil resources evaluation, but also awareness of their formation mechanism and evolution procedure can be effective in application programmes, environment protect and soil preservation and etc. Basically, when the gypsum amount in soil is poor, its existence is proper for plants growth, but the yield of crop production is decreased by increasing gypsum percent because of imbalance in nutrient elements absorption by plants roots. One of the product increase methods in surface unit and/or in the other world optimum use of lands is identifying production capacity of each land and choosing proper application with that production capacity. Identifying the lands proportion evaluation is a proper solution for acquiring this goal. Nowadays, the formation of gypsic ferous soils, evaluation of these lands and presenting special management and proper agricultural garden shift for these lands are among considerable subjects. These soils formation and extent part of under farm lands of Bardsir area that in some points have had many destructive effects on soil's function and features.

MATERIALS AND METHODS

The Study Area: The land investigated in research located in Bardsir (kerman province) and has the area of 3000 hectares between latitudes of 47°29'30" and 52°29'30" N and between longitudes of 56°45'00": 56°52'30" E at west south of Kerman city. The average heights are 1980 meters from sea level (Fig.1).

Sampling: Based on Soil Taxonomy [10], this region has soils in Aridisols and Entisols orders. Using GPS device and base map, profiles location defined and profiles excavated and described using presented methods in “Field Book Describing and Sampling Soils” [11]. To perform experimental studies, 59 bulk soil samples prepared and air dried and after being ground passed through standard sieve size of 2mm. The soil texture was defined via hydrometric method and after calibration in saturated paste the pH and Electrical Conductivity (EC) were measured, calcium carbonate content measured via Calcimetry methods, gypsum measured via Acetone, cation exchange capacity measured via Bower method [12].

In this study, 59 points (35 profiles and 24 drills) were studied in the kind of profile and drill (alternatively). Profiles were sampled and described according to key to soil taxonomy [10] guide up to family level. Land suitability evaluation were performed according to the land quality for special agricultural plants [13]. Land suitability classes were calculated by parametric method and herbaceous needs were extracted from tables which were collected by eyes using harmony and correction with area conditions [14].

RESULTS AND DISCUSSIONS

On the basis of performed pedology studies in selected lands, diagnostic horizons of Gypsic and Cambic were segregated and categorized according to key to soil taxonomy in aridisols and entisols orders and
Reviewing of products function in gypsi- and non-gypsiferous soils show that gypsiferous soils weight in average are at least one ton in hectar lower then non-gypsiiferous soils, which is considerable in the level of 5000 hectares of gypsiferous soils in Bardsir area [18-21].

According to the performed studies about optimum use of these resources, the following cases are suggested:

- Choosing proper production according to the physical and chemical conditions of area's soils and climate.
- It is better to evaluate all the features of gypsiiferous soils and different respects of these soils in order to optimum use of production resources.
- Gypsiiferous soils have limitations in the view of nutrients, so, performing correct fertilization can be effective.
- Farmer's education and their awareness of gypsiiferous soil's features can be effective in the improvement of production condition.

CONCLUSION

Gypsiiferous soils have been cultivated for centuries under traditional rotational rainfed farming systems in which wheat or barley is followed by leguminous grain crops or by fallow. Under rainfed farming conditions, yields depend mainly on rainfall and are usually low to moderate. Soil chemical properties are in a dynamic equilibrium. Gypsum and other salts are leached in the rainy season to deeper horizons and returned to the surface horizons during summer by capillary rise. When gypsiiferous soils are irrigated changes in their chemical properties take place involving further movement of gypsum salts and nutrients.

The improvement in the productivity of gypsiiferous soils under rainfed conditions is currently approached by several methods depending upon the soil properties.

Soil terracing has been practised for many centuries on the deep hilly soils of the Murcia area of Spain to prevent erosion. Fruit orchards have been planted including peaches, pears, olives and other crops. Supplementary irrigation has been used to increase productivity where water resources are available.

Harrowing the land after harvesting and before the rainy season is a common practice to improve the infiltration of water and conserve soil moisture.

The organic matter of soils can be increased by replacing fallow by small-grain leguminous crops in the wheat-fallow rotations. This was practised in Syria and Iraq, especially in areas where the annual precipitation
ranges between 250 to 450 mm. Akramov [22] discusses the positive effect of manure on converting unproductive gypsic soils into productive ones.

Subsoiling can be undertaken to break the cemented gypsic subsoil. This improves root penetration and reduces susceptibility to drought, especially in the case of fruit and forest trees. It improves crop establishment and has been practised by many farmers in Algeria, Syria and other countries for planting pistachio, almond, etc., in soils with a hard calcareous crust. Caution should be exercised not to mix the topsoil and subsoil. The former usually contains less gypsum and has a higher organic matter than the latter.

Fertilization is very beneficial in increasing productivity. It has become a general practice under rainfed conditions to apply nitrogen and phosphorus to cereals. The rate of applied nitrogen fertilizers depends on the annual precipitation; N is generally applied where rainfall exceeds 260 mm annually. Phosphorus fertilizers are very effective in increasing the yield of cereals, especially under low rainfall.

Cereals are grown satisfactorily on soils with less than 30 cm depth and less than 25 percent gypsum content, especially if precipitation is adequate, ranging between 250 and 350 mm. Under higher rainfall these types of soils are satisfactory for many varieties of grape vines.

REFERENCES