Genetic Engineering: A Panacea to Senescence and Death

Nwagu Kingsley Ekene, Enwere Evelyn Nwakaego and Madu Francisca Uzoma

Department of Biology/Microbiology/Biotechnology, Faculty of Science, Alex Ekwueme Federal University Ndufu Alike Ikwo, Ebonyi State, Nigeria

Abstract: Senescence (aging) has a great impact in diseases and life expectancy of living organisms. Recent developments in genetic engineering and scientific understanding of the flaws of human, plant and animal bodies portend a great stride towards achieving immortality. With current knowledge of genome editing technology such as clustered regularly interspaced short palindromic repeat (CRISPR), telomere engineering and stem cells manipulation, it is possible to design and test interventions that delay aging and improve both health and lifespan. These technologies have the ability to insert or delete, activate or deactivate and reset the genotype or phenotype of individuals, thereby, delaying aging and its adverse effects. Rejuvenation of cells through the control of apoptosis, treatment of genetic disorders through gene therapy and neutralization of devastating signaling pathway through the regulation of metabolites or gene expression have been achieved through these technologies. If factors such as proliferation of cells and other ethical issues are tackled, it is believed that living organisms can live younger and longer than expected and immortality could be achieved in nearest future.

Key words: Aging • CRISPR • Disease • Gene • Immortality • Technology

INTRODUCTION

During the last century, many dramatic discoveries were made and with the advent of genetic engineering, great strides exist in the improvement of various organisms, coupled with the understanding of senescence (aging) and death in the world today. It is believed that the problem of aging and death can be tackled at cellular level (through the genes), although many evolutionary biologists would deny that aging is part of the genetic repertoire of a living organism (humans, animals or plants) [2]. Rather, they would consider aging to be the default state occurring after the organism has fulfilled the requirements of natural selection. After their offspring are born and raised, the organism can die. This is exactly what happens in many organisms such as moths and salmon; as soon as the fertilized eggs are laid, the adults die. Nevertheless, recent studies have shown that there are genetic components to senescence and that the genetically determined life span characteristic of a species can be modulated by altering genes [3]. This modification can occur in plants, animals and humans’ gene in the process known as Genetic Engineering.
According to Britannica.com, genetic engineering involves various techniques used for the manipulation or modification of organisms through the processes of reproduction and heredity. It includes both artificial selection and biomedical techniques, such as in-vitro fertilization, artificial insemination and cloning. In the 20th century, genetic engineering referred more specifically to methods of recombinant DNA technology in which DNA molecules from two or more organisms are joined either within or outside cells and then inserted into host organisms for propagation. Genetic engineering could conceivably fix extreme genetic disorders in people by supplanting the faulty gene with a working one. It is an essential instrument in research that enables the capacity of particular gene to be analyzed.

Genetic engineering methods involving use of gene editing (CRISPR technology) combined with other gene therapy methods involving insertion of modified DNA strands or genes e.g. fusion of Tet1 (Ten-eleven translocation methylcytosinedioxygenase 1) or DNMT3A (DNA Methyltransferase 3 Alpha) with a catalytically inactive Cas9 (dCas9) enables targeted DNA methylation editing [4]. BER (Base Excision Repair) introduced into the cell repairs most of the oxidized DNA damage [5]. Overexpression of heat shock protein 70 (HSP70) also protects against age and disease related tissue degeneration in brain, heart and skeletal muscle [6].

Researchers have taken a particular enthusiasm for aging and consequent death. New technological leaps have shown capacity to direct a closer investigation into possible prevention of senescence and natural deaths in living organisms. With the advances in different genetic engineering methods, scientists have estimated that senescence and death would be a thing of the past by the year, 2050 [7]. Growth and development of organisms are accompanied by generation and degeneration (necrotic or apoptotic) of cells. As the process prolongs, the organism begins to age, which is a major factor that leads to certain diseases such as senile dementia, poor sight, reduced physical activities and sudden death. Studies have demonstrated that senescence can be controlled, by genetic variables and biological procedures inherent to humankind through genetic engineering. It is believed that the pathological and programmed cell death could be controlled through the manipulation of specific genes in the genome of any organism involved. Once the cause of diseases (genetic and non-genetic) are controlled or prevented and cells genetically manipulated for longevity, natural death can be reduced if not averted.

Understanding Senescence and Death: Senescence is synonymous with aging. It occurs virtually in all living organisms ranging from eukaryotes to prokaryotes. Any multicellular organism utilizing energy from the sun can develop and maintain itself; progressively, the synthesized products gradually degenerate and the organism ages. Aging is the time-related decay of the physiological capacities necessary for fertility and survival. Its qualities influence every one of the people of a species. Senescence is a cellular program that causes a reliable growth arrest combined with unmistakable phenotypic alterations, extending from chromatin redesigning to metabolic reconstructing, extended autophagy and the execution of a complex proinflammatory secretome [8, 9]. These unpredictable changes to the cell, as it were, serve to realize distinctive parts of senescence, for instance, growth arrest and the senescence secretome. Notwithstanding the various signs of senescence, stable development arrest is its portraying trademark. An invariable arrest is feasible to ensure that harmed or transformed cells do not propagate their genomes. This development arrest is executed by the actuation of p16INK4a-Rb and p53-p21Cip1 tumor silencer systems [10]. Senescence is without a doubt an incredible instrument of tumor concealment [11, 12]. Senescence has in like manner physiological functions in the midst of standard enhancement [13, 14], cooperating with apoptosis to empower embryonic morphogenesis. In grown-up tissues, senescence is actuated primarily as a response to harm, mulling over camouflage of potentially broken, transformed, or developed cells. In spite of the way that senescence is a normally indispensable process, it may incorporate some noteworthy destruction.

In mammals, senescence (aging) occurs across multiple organ systems, inducing progressive deterioration that may result in tissue dysfunction. Therefore, aging is a risk factor for many diseases [15], such as cardiovascular disease, dementia, osteoporosis, osteoarthritis, cancer, type 2 diabetes, idiopathic pulmonary fibrosis and glaucoma [16-18]. Our understanding of the aging process remains limited irrespective of these links with human pathology. Although the full biological causes of aging is yet unknown, previous studies have identified common cellular and molecular traits associated with it [19].

Plant senescence is the recycling of plant’s valuable cellular building blocks deposited in the leaves and other parts in the midst of advancement [20]. These recyclable...
nutrients can be used in new advancement or development of the plant or sent to the seed as supplement store to the next generation. Senescence in plants is therefore fundamental for their wellbeing. It is a complex and coordinated process that involves the interactions of many signaling pathways resulting in the expression of new qualities. In harvests, inappropriately timed senescence can decrease final product yield and in various vegetable yields, basic postharvest hardship is a result of senescence. Unraveling the managerial parts that underlie senescence may have significant impact on extending future sustenance generation.

In prokaryotic cells such as bacteria, the cells do not have a fixed life span but the parent cells divide to produce the new cells. The new ones do not divide immediately, rather, they grow and develop within very short periods before they divide. This period of growth is accompanied with senescence.

Numerous evolutionary scholars would deny that senescence or aging is a piece of the genetic collection of a cell or an organism, or they may view aging as the default state happening after the cell or organism has satisfied the necessities of natural selection. After its posterity are brought up, the cell or organism can die. In fact, in numerous organisms, from moths to salmon, anemones and lobsters. Such organisms are now and then said to display negligible senescence. In prokaryotic cells such as bacteria, the cells divide to produce the new cells. The new ones do not divide immediately, rather, they grow and develop within very short periods before they divide. This period of growth is accompanied with senescence.

Negligible Senescence and Immortality: Virtually, all living organisms are prone to senescence and death but there are certain species of living organisms or their cells that may not age or die. This is seen as negligible senescence and death observed in both microorganisms, plants and animals. Although most microorganisms such as fungi age, numerous species can be viewed as immortal: for example, bacteria divide between once every 12 minutes and 24 hours to deliver daughter cells with a life span of about 250 million years. Some perennial plants ranging from strawberries, potatoes to willow trees undergo vegetative propagation and are seen as potentially undying. Hydra avoids death by aging through its regenerative capacity. The 15,000-year-old Antarctic sponges known as the most seasoned animals can recreate both sexually and clonally. Asides clonal immortality, there are a few species whose singular life expectancies standout amongst other Earth's animals, e.g. the bristlecone pine at 5062 years or 5067 years, Likewise invertebrates, for example, the hard clam otherwise called quahog in New England at 508 years, the Greenland shark at 400 years, different deep sea tube worms at more than 300 years, fishes, for example, the sturgeon and rockfish, more so sea anemones and lobsters. Such organisms are now and then said to display negligible senescence.

Early living things (prokaryotes, protozoans, algae) on Earth, beginning in any event 3.7 billion years prior were unicellular organisms. They multiplied by fission into daughter cells. Consequently, they do not age and are biologically (innately) immortal. Aging and mortality of organisms at that point ended up conceivable with the change (advancement) of sexual propagation which happened with the outgrowth of the fungal/animal kingdoms around a billion years back and the development of seed creating plants around 320 million years earlier.

Certainly, even inside humans and mortal species, there are cells with the potential for immortality: cancer cells which have lost the capacity to die when kept up in a cell culture, for example, the HeLa cell line and particular undifferentiated cells, for example, germ cells (creating ova and spermatozoa). Grown-up cells can be restored to embryonic status in artificial cloning and then be used to grow another tissue without aging. According to Hayflick and Moorhead, a typical human cell normally die after about 40-60 cell divisions in laboratory culture.
Causes of Senescence (Cellular Death): Evidences abound on the causes of senescence in different species of living organisms, although, there is no consensus. Various factors such as DNA repair, oxidative stress, unfolded protein response, stem cell exhaustion, genetic aging programs, mitochondrial genome damage and telomere shortening have been attributed to be the major causes of senescence at different cellular level of organization. Other factors that contribute to aging include: glycation, stress and inflammation [28].

DNA Repair: DNA repair system plays a part in the aging process. During replication, DNA is modified and a control system uses proteins and enzymes to reprogram the modified cell. In the cause of modifying the damaged DNA, these proteins exert other effects that are linked to mitochondrial functions and nicotinamide adenine dinucleotide (NAD+)[29]. Studies have shown that more DNA-repairing proteins (PARP) can be found in aged individuals [30]. Over-activation of PARP leads to the exhaustion of NAD+ stocks and can induce cell apoptosis if the DNA damage is severe [31]. Aging is marked with an increase in the number of dead cells which leads to the degradation of organs.

Oxidative Damage: Oxidation is caused by free radicals that come from the oxygen contained in the air we breathe [30]. About 2-3% of the oxygen atoms taken up by the mitochondria are reduced insufficiently to reactive oxygen species (ROS) such as superoxide ion, the hydroxyl radical and hydrogen peroxide. ROS can oxidize and damage cell membranes, nucleic acids and proteins. Evidence for this theory includes the observation that Drosophila that overexpress enzymes (catalase) that destroy reactive oxygen species live 30-40% longer. Flies with mutations in the methuselah gene live 35% longer than wild-type flies. The methuselah mutants have enhanced resistance to paraquat, a poison that works by generating reactive oxygen species within cells [32]. Conversely, it has been shown that an increase in antioxidants has no effect on life expectancy, but an increase in the levels of free radicals result to longer life expectancy [33].

Unfolded Protein Response: Each protein has a specific unfolded shape (a linear chain of amino acids) in which it is not functional. The chemical properties of each amino acids gives protein its shape that enables it to perform its function within the cell. Many age-related diseases, especially neuro-degenerative diseases (Alzheimer and Parkinson disease) occur due to the buildup of unfolded proteins inside the cell [34].

Stem Cell Exhaustion: Stem cells: Stem cells are undifferentiated cells; they belong to no specific organ and can generate specialized cells through cellular differentiation. They are stored in the body and allow the renewal of cells in an organ. Some cells age and die and need to be replaced on a regular basis. A red blood cell lasts for an average of 120 days. With aging, regeneration of tissues is affected due to the slowdown of cell division and the lack of stem cells replacement. This is shown by the accumulation of DNA damage on stem cells or overexpression of proteins blocking the cellular cycle [35, 36]. Some organs such as pancreas and heart cannot be renewed when damaged because they have no stem cells.

Genetic Aging Programs: Several genes have been implicated in aging. In humans, Hutchinson-Gilford progeria syndrome causes children to age fast and to die as early as 12 years usually due to heart failure. This is caused by a dominant mutant gene and its symptoms include thin skin with age spots, hair loss, arteriosclerosis and resorbed bone mass. Also, mutation of the klotho gene in mice causes similar syndrome [37]. The functions of the products of these genes are not known, but they are thought to be involved in suppressing the aging phenotypes. These proteins may be extremely important in determining the timing of senescence.

Mitochondrial Genome Damage: Degradation could be induced by the bridge of communication between the mitochondria and nucleus. The mutation rate in mitochondria is 10-20 times faster than the nuclear DNA mutation rate. It is thought that mutations in mitochondria could lead to defects in energy production, production of ROS by faulty electron transport and induce apoptosis. A recent report shows that there are “hot spots” for age-related mutations in the mitochondrial genome and that mitochondria with these mutations have a higher replication frequency than wild-type mitochondria [38]. Thus, the mutants are able to outcompete the wild-type mitochondria and eventually dominate the cell and its progeny. Moreover, the mutations may not only allow more ROS to be made, but may make the mitochondrial DNA more susceptible to ROS-mediated damage.

Telomere Shortening: Telomeres are repeated DNA sequences at the ends of chromosomes. They are not replicated by DNA polymerase and will shorten at each cell division unless maintained by telomerase. Telomerase adds the telomere onto the chromosome at each cell
division. It has been proposed that telomere shortening could be seen as a biological clock which activates cell senescence as soon as its time is up [30]. This limits the life expectancy of our cells. Genetic modification of old and weak mice in order to activate the genes responsible for telomerase production showed that the mice were rejuvenated and damaged tissue also regenerated [39]. Cultivated skin cells can divide about 40 to 60 times in their lifetime before beginning their aging process. Activation of telomerase production through genetic modification could lead to those cells dividing 300 times. However, increasing telomerase activity is linked with cancer.

Genetic Engineering Prospects to Senescence and Death:

The identification of various factors that lead to cell degeneration due to apoptotic or necrotic body activities and consequent aging or death is the first step towards finding their solutions. Advances in modern biotechnology has evolved some genetic engineering techniques that serve as preventive, curative and control measures to senescence, diseases and natural death in living organisms. Some of these techniques are discussed as follows;

Use of CRISPR-Cas9 System: According to Vidyasagar [40], CRISPRs (Clustered Regularly Interspaced Short Palindromic Repeats) are specialized stretches of DNA while the Cas9 protein (CRISPR associated 9 protein) is an enzyme that acts like a pair of molecular scissors, capable of cutting strands of DNA. It is a powerful tool for editing the genome of organisms that allows geneticists and researchers to alter the DNA sequences and modify the functions of genes. It was developed from the natural defense mechanism of bacteria and archaea. These organisms use CRISPR-derived RNA and Cas9 to foil attacks by viruses and other foreign bodies through cutting off and destroying of the DNA of foreign invaders. When these components are transferred into complex organisms, it allows for the editing of genes. The key advance in editing an organism's genome is particular targeting of a specific sequence of DNA. The communication of a complex of two biological macromolecules, the Cas9 protein and guide RNA, helps to distinguish target sequences with high selectivity. Both in natural and artificial CRISPR/Cas frameworks, the Cas9 protein finds and cleaves target DNA. It has six areas, REC I, REC II, PAM Interacting, RuvC, Bridge Helix and HNH [41].

This has generated huge fervor and extraordinary assumptions regarding the prospect of utilizing CRISPR to modify genetic sequences to enhance our wellbeing, to treat diseases, enhance the quality and quantity of food and handle ecological contamination. The molecular basis of physiological aging is sufficiently complex that we have not fully unraveled the processes and genes involved in it, even at this stage. However, we do have a few clues as how we can begin to think about how CRISPR could be employed to stop these processes. If we work systematically, CRISPR has the potential to help us solve the issue of disease occurrence, which could allow us to age without experiencing the current age-related decrease in quality of life. Diseases such as cancer, AIDS, blood disorder, cystic fibrosis, Huntington’s disease and muscular dystrophy can be prevented or cured using CRISPR technology.

In cancer treatment, Hangzhou Cancer Hospital in China is currently testing the potential of the gene editing tool in patients with advanced cancer of the esophagus. Firstly, the patient’s T cells are extracted. CRISPR is then used to remove the gene that encodes for a receptor called PD-1 (program cell demise 1) that can bind to some tumors and prevents attack by the immune system. Lastly, the modified cells are transferred into the patient with a higher capacity to attack tumor cells. At least 86 cancer patients have been treated with CRISPR in China [42].

CRISPR has been applied in the treatment of blood disorder. The first CRISPR trial in Europe was to treat beta-thalassemia, a blood disorder that affects the transport of oxygen in the blood [43]. A company known as CRISPR Therapeutics and Vertex Pharmaceuticals has developed a therapy which involves using CRISPR to make fetal hemoglobin from hematopoietic stem cells harvested from patients. The fetal hemoglobin is a natural form of the oxygen-carrying protein that binds oxygen much better than the adult form [44]. In 2018, United State carried out another preliminary treatment of sickle cell anemia, an inherited blood disorder caused by a transformation that deforms the red blood cells using CRISPR. The stem cells that generate red blood cells (hematopoietic blood cells), are taken from the patient and mutations are corrected by editing in the laboratory. The cells are then re-introduced into similar patients. The expectation is that by correcting the undifferentiated organisms, the cells they presently create will be ordinary, restoring the disease [45, 46].
AIDS could also be fought or treated using CRISPR by cutting off the HIV virus out of the DNA of immune cells [47]. This approach could attack the latent form of the virus which is inserted into our DNA, preventing most therapies from targeting it. The approach could also induce a natural resistance to HIV due to a mutation in a gene known as CCR5 (chemokine receptor type 5). CCR5 encodes for a receptor on the surface of immune cells that HIV needs to get inside the cells. This prevents the virus from binding to the receptor due to the mutation in the gene structure. Early stage advancement of most CRISPR applications in HIV are being tested in animals before a clinical trial in humans can be planned.

Cystic fibrosis, a genetic disease that causes severe respiratory problems can be tackled using CRISPR technology. The life expectancy for a person with cystic fibrosis is only around 40 years after using the available treatments to deal with the symptoms. CRISPR technology could treat this disease from its origin by editing the mutations that cause it. This mutation is located in a gene called Cystic fibrosis transmembrane conductance regulator (CFTR). It has been demonstrated that CRISPR could be used in human lung cells derived from patients with cystic fibrosis to fix the most common mutation behind the disease [48]. Editas Medicine and CRISPR Therapeutics are already testing its application in humans [49]. However, different CRISPR therapies need to be developed for different genetic defects since cystic fibrosis can be caused by multiple of different mutations in the CFTR gene. Editas has stated that it will focus at the most common mutations as well as some of the rare ones for which there is no treatment.

Another genetic disease known as muscular dystrophy that cause progressive weakness and loss of muscle mass can also be treated using CRISPR technology. Duchenne’s muscular dystrophy (DMD) is caused by mutations in the DMD gene, which encodes for a protein (dystrophin) necessary for the contraction of muscles [50]. Children born with this disease suffer progressive muscle dystrophy. Currently, there is no treatment available for DMD apart from palliative care. Research carried out in mice have shown that CRISPR could be used to fix the genetic mutations behind this disease [51]. Researchers in the US revealed a method that, instead of fixing each mutation individually, CRISPR was used to cut at 12 strategic mutation hotspots covering the majority of the estimated 3,000 different mutations that cause this muscular disease. Exonics Therapeutics Company is working on further development of this approach [51]. Also, another company known as Editas Medicine is following a broader approach which CRISPR removes whole sections of the protein containing mutations that make the protein shorter but remain functional [52].

Huntington’s disease is caused by an abnormal repetition of a certain DNA sequence within the Huntington gene. The higher the abnormal repetition, the earlier the disease will manifest itself. It is tricky to treat Huntington’s disease as any off-target effects poses more dangerous consequences in the brain than anywhere else in the body [52]. A version of CRISPR-Cas9 called KamiCas9 that includes a “self-destruct button” for the Cas9 enzyme have been developed by researchers in US [53]. CRISPR is used to cut the sequence of its own Cas9 enzyme. Also, a group of Polish researchers has opted for combining CRISPR-Cas9 with an enzyme called ‘nickase’ to make the gene editing more precise [54].

Apart from cellular senescence or aging, CRISPR can also be applied in the control of physical aging. It can be administered topically to reach a depth a few centimeters below the skin. Several companies are developing topical gels and creams to fight viral infections that live in reservoirs below the skin’s surface. Therefore, using a CRISPR-based topical cream to boost collagen production or increase skin’s elasticity and moisture may not be that far off. A research carried out at University of Alabama at Birmingham showed that aging-associated skin wrinkles and hair loss in a mouse model has been reversed. A nuclear gene mutation affecting mitochondrial function causes wrinkled skin and hair loss. Turning off the nuclear gene mutation restores the mouse to normal appearance [55]. The mutation is induced when the antibiotic doxycycline is added to the food or drinking water resulting in depletion of mitochondrial DNA due to the inactivation of the enzyme to replicate the DNA. A decline in mitochondrial function is seen during aging in humans and mitochondrial dysfunction can drive age-related diseases such as cardiovascular disease, diabetes, age-associated neurological disorders and cancer [56-58].

Telomere Engineering: Genetic manipulation of chromosomal telomeres has a great effect in the aging of cells. Shortening of telomeres due to lack of telomerase is linked with aging. Experiment on mice to examine what happens to mice once steps are taken to prevent telomeres from shortening was carried out by Ronald DePinho and a team of Harvard colleagues [59]. They bred a bunch of genetically modified mice that lacked the power to produce telomerase and watched as these mice showed speed and extremely early onset symptoms of aging. These mice were later given injections
to re-activate the enzyme telomerase, expecting to be faced with the aging method back to traditional levels. It was observed that the mice to aged backwards with their withered organs repairing themselves to the point of generation of new neurons in their brains. According to Cavallasca [60], experiments were conducted on mice by Spanish researchers in order to lengthen the mice health span and lifespan as they aged. The aim of the experiment was to treat 1 and 2 year old adult mice by injecting them with an adeno-associated virus (AAV) that can synthesize mice telomerase through the TERT (telomerase reverse transcriptase) protein. Their general health and lifespan were then compared to those of healthy mice of the same age. The mice under treatment showed better general and physical health compared to the control group and a longer lifespan (+24% in 1 year old mice, +13% in 2 years old mice). There was no higher tumor or cancer cells, despite the fact that an excess of telomerase can induce higher cell division and the creation of tumors and cancer cells [61].

On humans, there is great possibilities of treatment of ageing linked genetic diseases based on the scientific report from the Stanford University School of Medicine. They claim to have discovered a way to replenish the length of telomeres using a modified RNA (called modified TERT mRNA) containing the exact nucleotide sequence of telomerase reverse transcriptase (TERT) [62]. In their report, just three applications of this, within a few days, caused an increase in telomere length of as much as 10%, representing approximately 1,000 nucleotides. Cell division in human muscle cells was increased approximately by three-fold with the use of this technology. It was an exciting discovery when the same routine was used with human skin cells. These cells divided around 28 times more than the placebo. There have been successful experiments with TERT therapies but with issues of immune response to the modified enzyme in each case. There was no such response in the new technique employed by the team at Stanford. The rate at which division was increased suggests that any side effects could be limited for patients, due to the need for only short, infrequent applications.

Resetting Epigenetic Memory in Aged Stem Cells:
The development of adult frogs from the transfer of tadpole intestinal somatic nuclei into oocytes showed that cellular memory of somatic cells can be reversed and even erased [63]. Evidence suggests that a similar approach might be applied to reset the molecular memory of aging cells. Somatic cell nuclear transfer of senescent fibroblasts from aged bovine donors results in cloned calves with fibroblasts that have restored population doubling and increased telomere maintenance compared to age-matched control animals [64]. It has been further proposed that reprogramming aged somatic cells into iPSCs (Induced pluripotent stem cells) or iPSC-like cells followed by redifferentiation to the desired somatic cell types may help reset the memory of aged somatic cells [65]. This possibility has been supported in part by studies in which aged hematopoietic progenitors were reprogrammed to produce iPSCs. These iPSCs were then used to create new HSCs (Hematopoietic Stem Cells) in a chimeric embryo system and yielded complete rejuvenation of hematopoietic activity.

CONCLUSION

Apart from rare mutations caused by viruses, radiation, unknown factors, individuals mostly have the same DNA from cradle to grave. Yet, humans and many other species that age in an accelerated or gradual manner obviously change during their lifespan. The Human genome project completed a decade back is a great breakthrough in science. Having the entire genome sequence of an individual from birth to old age would help to figure out all genome mutations caused by aging and alter them back using gene editing tools like CRISPR Cas9. Building predictive models from multiple individuals of different age using Machine learning (artificial intelligence) would facilitate the application of this gene editing technology without having to wait for an individual’s genome data from birth to old age.

Although there are ethical issues to these advancement in genetic research, it has undoubtedly unraveled aging processes, how it affects our lives and how we can manipulate it to make our lives better. Even if death is not eradicated, people will be freed from the burden of age related diseases especially as a result of the recent application of gene therapy using the magnificent CRISPR technology. Challenge for future research would be to determine if these changes can be modeled fit for the entire populace in terms of cost, availability and ease of use.

ACKNOWLEDGMENT

We express our gratitude to the lecturers in the Department of Biology/Microbiology/Biotechnology of Alex Ekwueme Federal University Ndufu Alike Ikwo, Ebonyi State for availing information to us in the cause of drafting this manuscript.
REFERENCES

43. Terry, M., 2018. CRISPR Therapeutics Plans to Treat First Patients for Beta Thalassemia in Europe. https://www.biospace.com/

