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Abstract: In this works we construct the travelling wave solutions for a nonlinear evolution equation. The

(G'/G)-expansion method 1s used to construct the travelling wave solutions of the fifth order positive and
negative Gardner-KP equation. The rational hyperbolic and other functions methods can be applied directly

which the exact answers may have some physical interoperation. These characteristics make these methods so

exceptional in exact solutions.
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INTRODUCTION

The (G’ / G)-expansion method was developed by
Mingliang Wang (2007). The method is now used by
many researchers i a variety of scientific fields. In recent
years, quite a few methods for obtaining explicit travelling
and solitary wave solutions of nonlinear evolutions
equations have been proposed. A variety of powerful
methods, such as Beklund and Darboux transformation
[1-5]. the tanh-sech method [6-8], extended tanh method
[9], Exp-function method [10-13], the sine-cosine method
[14-16], the TJacobi elliptic fimetion method [17-18], the
(G'/G) expansion method [19], He’s homotopy
perturbation method [20-22], homogeneous balance
method [23-24], adomian decomposition method [25-27]
and so on...

Description of Our Method: Considering the nonlinear
partial differential equation in the form

Pluug g uuy 0,0 ,..)=0 4]

Where # = wu(x?) is an unknown function, P is a
polynomial i # = u(x,£) and its various partial derivatives,
in which the highest order derivatives and nonlinear terms
are involved. In the following we give the main steps of

the (g) -expansion method.
G

Stepl: Combining the independent variables x and t into
one variable &= x-vt, we suppose that

u=u(xy,t) =u(é) E=k (xty-v) (2

The travelling wave variable (2) permits us to reduce
Eq(1) to an ODE for G = G (£), namely

Plu ki ,—vi' ' ,vzkzu",kazu”,....) =0 (2)

Step2: Suppose that the solution of ODE (3) can be
expressed by a polynomial in (g) as follows
G h
=0, (—)+...,
u(&) =0, ( G)

Where G = G (£) satisfies the second order LODE 1 the
form
G"+AG'+ uG =10 (50

@y, Aand g are constants to be determined later a,#0,

the unwritten part in 4 is also a polynomial in, (g) but the
G

degree of which is generally equal to or less than m-1, the
positive integer m can be determined by considering the
homogeneous balance between the highest order

derivatives and nonlinear terms appearing in ODE (3).

Step 3: By substituting (4) into Eq. (3) and using the
second order linear ODE (5),

with the same order (g) together, the left-hand side of
G

collecting all terms

Eq. (3) 1s converted mto another polynomial in (g) :
G
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Equating each coefficient of this polynomial to zero yields
a set of algebraic equations for a,,....,A andu.

Step 4: Assuming that the constants «,,....,4 and g canbe
obtained by solving the algebraic equations in Step 3,
since the general solutions of the second order LODE (5)
have been well known for us, then substituting a,_......v
and the general solutions of Eq. (5) mto (4) we have more
travelling wave solutions of the nonlinear evolution
equation (1).

Application of Method for Gardner-KP Equation: At first
we consider the Gardner-KP Equation as follows

+u,, =0

2
(ot + Ono, T Ou™o, +u ), +uy,

Permits us converting Eq. (6) into an ODE in positive case
for u = u(£), £= k (x+y-vf) and integrating we have

(—v+1)u+3u2i2u3+k2u”+c:0 (7

And for simplicity the first integral constant considered
by zeroBy considermng the homogeneous balance
between ¢~ and y° in Eq. (7), we required that 3m = p2, so
we can write (4) as

u(E) = a1<%>+ o

So we have

3

G G G
u = tx13 (5)3 + 30512050 (E)2 + 30510{02(5) + tx[,3

(8)
2 2.G o a ()
=0y (—) + 2ogog (— )+ o
u I(G) <) O(G) 0
By using (5) it 1s derived that
" '3 G2 2 g
=206 (—)" + 3opA(— AT +2 — A
u al(G) + a0 (G) +(opA” + “1#)(G)+Cf1 H
(10)

In this case we substituting the relation above into
equation (7) and collecting all terms with the same power
of (G'/G) together, the left-hand side of Eq. (8) 1
converted into another polynomial n (G'/G). Equating
each coefficient of this polynomial to zero vields a set of
simultaneous algebraic equations for a,, a, v, 4, ¢ and c as
follows:

Positive Case:

G 3 3,2

—): 2097+ 2k%0y =0

(G) i 1

(G')Z- 3047 + 604 0y + 3k %0y = 0

o o + 60 "o + 3k "o =

G 3 a2

(E) : (—v+ Doy + 600y + 6oqoty” + k- (g A” + 2o ) =0
G0 2 3, .2

(E) : (—v+ Doy + 30" + 20y +E oA+ e=0

By solving algebraic relations above by maple package we
obtain,

a=+k
For a, = ki we have

Cfo = -i(k/l-‘rl)

2i
v= —%(kzﬁ,z — A+
e= %(741\72# 1+ k%A%

A is arbitrary constant. By substituting o, a, into equation
(10) we obtain

LG .
(&)= kt(g)-a(k?»ﬂ), an

Substituting the general solutions of Eq. (5) as follows

g 1 Cysio 224+ oo iz
T —2 : )
M e e s 2

Into (11) we have three types of travelling wave solutions of the (3+1)-dimensional Burgers system (6) as follows:

When A* - 44> 0

ki

u(&) =02 g

g sinh%\flz —4uE+ G, cosh%-\llz —4ué

- Lkdi 14 4

1
2 g cosh%\jlz —A4uE+C, Sinh%\llz —4ué 2
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Where £ - gyt yv— (kzlz k2 + 1y € and C; are arbitrary constants.

In particular, if C, # 0, 4 » 0, & = 0, &, become

u(ﬁ)—k—lzgh ;Léf-—(kl: 1+ A4)

—C’lsm;\fél;u lzf-s-czcos—\fﬁl;u lzé
C’ICOS%\H;L lzf-s-czsm—\lél,u lz’g'

When A* - 4u<0

(kﬂ.z—l-&- A)

ki
u(§) =A% - 4px(

When A* =
kiC
u(E)=—"22
O+ G
And for g, = - ki we have
1 .
CCO = Z(k;t - 1)

= —%(kzlz Ak 1)

= %(741\72# 1+ k%A

In this case we obtain three travelling wave solution as previous section m following form:

When A - 440

) sinh%\[lz —Aué+C, cosh%\flz —Aué
) cosh%‘\/lz AuE+C, smh%\flz Aué

Where £ - kixt y+ %(kZAZ — Akt + 1) - € and .G, are arbitrary constants.

)+ 1(k/’Lz+1 A)

&)= TR g

Inparticular, if C, # 0,C, =0, A » 0, 4 = 0, #, become

(€)= k’hz k%l§+%ﬂdi+l—l)
When A* - 4u < 0
1 1
e —Olsm?m—)\?g+02cos5,/4p—)\2§ L

c, cos%-\/élu —Net0, sin%\’al,u — A2
When A7 - 4u =0
—kiCly
Oy + 0y’

) =

Negative Case: In this section by substituting the relations (8-10) in following negative type

(—v+1Lu+ 3wl 203+ K+ =0

And collecting all terms with the same power of (G'/G) together, the left-hand side of Eq. (8) is converted into another
polynomial in (G'/G). Equating each coefficient of this polynomial to zero yields a set of sumultaneous algebraic
equations for a,, a, v, 4, 4 and c as positive case we have:
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a,=+ki

Fora, =k

1

v= ;(zug?,u — % +5)

1
¢= Z(kg,u — 1)

When A*-4u < 0

o) sinh%-\})\g —4pg + 0, cosh%\p@ — 44

u(€) = ?1[,\2 —4p x

( )
e cosh%\f,\g —4pg + 0y sinhé\’)@ — 44

+%(1ik)\-,\)

Where ¢ — (z +y— é@k?ﬂ 2 5)¢) - C, and C, are arbitrary constants.

In particular, if C, = 0,C, =0, 4 = 0, # = 0, u, become

=Y
2

) =

When A* - 4u < 0

When A*-4u=0

travelling

-, sin%,}alp —Xeroy cos%\fél,u — X2

tghg)\f + %(1 £ kA-A)

) = =SV —ux(

) =

CONCLUSION

In this work we have seen that three types of

solutions of the Gardner-KP equation. the

(G*/G )-expansion method has its own advantages: direct,

concise, elementary that the general solutions of the

second order LODE have been well known for the

researchers and effective that it can be used for many

other nonlinear evolution equations.
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