New Solutions for Positive and Negative Gardner-KP Equation

¹S.M. Shafiof, ²Z. Bagheri and ²A. Sousaraei

¹Payame Noor University of Khoarasegan, Iran ^{2,3}Islamic Azad University, Azadshahr Branch, Azadshahr, Iran

Abstract: In this works we construct the travelling wave solutions for a nonlinear evolution equation. The (G'/G)-expansion method is used to construct the travelling wave solutions of the fifth order positive and negative Gardner-KP equation. The rational hyperbolic and other functions methods can be applied directly which the exact answers may have some physical interoperation. These characteristics make these methods so exceptional in exact solutions.

Key words: Gardner-KP equation \cdot Direct algebraic method \cdot (G'/G)-expansion method \cdot Travelling wave solutions

INTRODUCTION

The (G'/G)-expansion method was developed by Mingliang Wang (2007). The method is now used by many researchers in a variety of scientific fields. In recent years, quite a few methods for obtaining explicit travelling and solitary wave solutions of nonlinear evolutions equations have been proposed. A variety of powerful methods, such as Bcklund and Darboux transformation [1-5], the tanh-sech method [6-8], extended tanh method [9], Exp-function method [10-13], the sine-cosine method [14-16], the Jacobi elliptic function method [17-18], the (G'/G) expansion method [19], He's homotopy perturbation method [20-22], homogeneous balance method [23-24], adomian decomposition method [25-27] and so on...

Description of Our Method: Considering the nonlinear partial differential equation in the form

$$P(u, u_x, u_y, u_t, u_{tt}, u_{xt}, u_{xx}, \dots) = 0$$
 (1)

Where u = u(x,t) is an unknown function, P is a polynomial in u = u(x,t) and its various partial derivatives, in which the highest order derivatives and nonlinear terms are involved. In the following we give the main steps of the $\left(\frac{G'}{G}\right)$ -expansion method.

Step1: Combining the independent variables x and t into one variable $\xi = x - vt$, we suppose that

$$u = u(x,y,t) = u(\xi) \qquad \xi = k (x+y-vt) \tag{2}$$

The travelling wave variable (2) permits us to reduce Eq(1) to an ODE for $G = G(\xi)$, namely

$$P(u,ku',-vku',ku',v^2k^2u'',-vk^2u'',...)=0$$
 (2)

Step2: Suppose that the solution of ODE (3) can be expressed by a polynomial in $(\frac{G'}{C})$ as follows

$$u(\xi) = \alpha_m(\frac{G'}{G}) + \dots, \tag{4}$$

Where $G = G(\xi)$ satisfies the second order LODE in the form

$$G'' + \lambda G' + \mu G = 0 \tag{50}$$

 a_{mo}, λ and μ are constants to be determined later $a_{\text{m}} \neq 0$, the unwritten part in 4 is also a polynomial in, $(\frac{G'}{G})$ but the

degree of which is generally equal to or less than m-1, the positive integer m can be determined by considering the homogeneous balance between the highest order derivatives and nonlinear terms appearing in ODE (3).

Step 3: By substituting (4) into Eq. (3) and using the second order linear ODE (5), collecting all terms with the same order $(\frac{G'}{G})$ together, the left-hand side of

Eq. (3) is converted into another polynomial in $(\frac{G'}{G})$.

Equating each coefficient of this polynomial to zero yields a set of algebraic equations for $a_{\rm m},...,\lambda$ and μ .

Step 4: Assuming that the constants $a_{\text{m}},...,\lambda$ and μ can e obtained by solving the algebraic equations in Step 3, since the general solutions of the second order LODE (5) have been well known for us, then substituting a_m, \dots, v and the general solutions of Eq. (5) into (4) we have more travelling wave solutions of the nonlinear evolution equation (1).

Application of Method for Gardner-KP Equation: At first we consider the Gardner-KP Equation as follows

$$(u_t + 6uu_x \pm 6u^2u_x + u_{xxx})_x + u_{yy} = 0$$

Permits us converting Eq. (6) into an ODE in positive case for $u = u(\xi)$, $\xi = k(x+y-vt)$ and integrating we have

$$(-v+1)u + 3u^2 \pm 2u^3 + k^2u'' + c = 0$$
 (7)

And for simplicity the first integral constant considered by zero.By considering the homogeneous balance between μ and μ in Eq. (7), we required that 3m = m+2, so we can write (4) as

$$u(\xi) = \alpha_1(\frac{G'}{G}) + \alpha_0$$

So we have

$$u^{3} = \alpha_{1}^{3} (\frac{G'}{G})^{3} + 3\alpha_{1}^{2} \alpha_{0} (\frac{G'}{G})^{2} + 3\alpha_{1} \alpha_{0}^{2} (\frac{G'}{G}) + \alpha_{0}^{3}$$
 (8)

$$u^{2} = \alpha_{1}^{2} (\frac{G'}{G})^{2} + 2\alpha_{1}\alpha_{0}(\frac{G'}{G}) + \alpha_{0}$$
 (9)

By using (5) it is derived that

$$u'' = 2\alpha_1 \left(\frac{G'}{G}\right)^3 + 3\alpha_1 \lambda \left(\frac{G'}{G}\right)^2 + (\alpha_1 \lambda^2 + 2\alpha_1 \mu) \left(\frac{G'}{G}\right) + \alpha_1 \lambda \mu$$
(10)

In this case we substituting the relation above into equation (7) and collecting all terms with the same power of (G'/G) together, the left-hand side of Eq. (8) is converted into another polynomial in (G'/G). Equating each coefficient of this polynomial to zero yields a set of simultaneous algebraic equations for a_1 , a_0 v, λ , μ and c as follows:

Positive Case:

$$(\frac{G'}{G})^{3}: \qquad 2\alpha_{1}^{3} + 2k^{2}\alpha_{1} = 0$$

$$(\frac{G'}{G})^{2}: \qquad 3\alpha_{1}^{2} + 6\alpha_{1}^{2}\alpha_{0} + 3k^{2}\alpha_{1} = 0$$

$$(\frac{G'}{G})^{1}: \qquad (-\nu+1)\alpha_{1} + 6\alpha_{0}\alpha_{1} + 6\alpha_{1}\alpha_{0}^{2} + k^{2}(\alpha_{1}\lambda^{2} + 2\alpha_{1}\mu) = 0$$

$$(\frac{G'}{G})^{0}: \qquad (-\nu+1)\alpha_{0} + 3\alpha_{0}^{2} + 2\alpha_{0}^{3} + k^{2}\alpha_{1}\lambda\mu + c = 0$$

By solving algebraic relations above by maple package we $a_1 = \pm ki$

For
$$a_1$$
 = ki we have
$$\alpha_0 = -\frac{1}{2i}(k\lambda + i)$$

$$v = -\frac{1}{2}(k^2\lambda^2 - 4k^2\mu + 1)$$

$$c = \frac{1}{4}(-4k^2\mu + 1 + k^2\lambda^2)$$

 λ is arbitrary constant. By substituting $a_1 a_0$ into equation (10) we obtain

$$u(\xi) = ki(\frac{G'}{G}) - \frac{1}{2i}(k\lambda + i), \tag{11}$$

Substituting the general solutions of Eq. (5) as follows

$$u'' = 2\alpha_1 (\frac{G'}{G})^3 + 3\alpha_1 \lambda (\frac{G'}{G})^2 + (\alpha_1 \lambda^2 + 2\alpha_1 \mu)(\frac{G'}{G}) + \alpha_1 \lambda \mu$$

$$\frac{G}{G} = \frac{1}{2} \sqrt{\lambda^2 - 4\mu} \times (\frac{C_1 \sinh \frac{1}{2} \sqrt{\lambda^2 - 4\mu} \xi + C_2 \cosh \frac{1}{2} \sqrt{\lambda^2 - 4\mu} \xi}{C_1 \cosh \frac{1}{2} \sqrt{\lambda^2 - 4\mu} \xi + C_2 \sinh \frac{1}{2} \sqrt{\lambda^2 - 4\mu} \xi}) - \frac{\lambda^2}{2}$$

Into (11) we have three types of travelling wave solutions of the (3+1)-dimensional Burgers system (6) as follows:

When $\lambda^2 - 4\mu > 0$

$$u(\xi) = \frac{ki}{2} \sqrt{\lambda^2 - 4\mu} \times (\frac{C_1 \sinh{\frac{1}{2}} \sqrt{\lambda^2 - 4\mu} \xi + C_2 \cosh{\frac{1}{2}} \sqrt{\lambda^2 - 4\mu} \xi}{C_1 \cosh{\frac{1}{2}} \sqrt{\lambda^2 - 4\mu} \xi + C_2 \sinh{\frac{1}{2}} \sqrt{\lambda^2 - 4\mu} \xi}) - \frac{1}{2} (k\lambda i - 1 + \lambda)$$

Where $\xi = k(x+y+\frac{1}{2}(k^2\lambda^2-4k^2\mu+1)t)$. C_1 and C_2 are arbitrary constants.

In particular, if $C_1 \neq 0$, $\lambda > 0$, $\mu = 0$, μ , become

$$u(\xi) = \frac{k\lambda i}{2} tgh \frac{1}{2} \lambda \xi - \frac{1}{2} (k\lambda i - 1 + \lambda)$$

When $\lambda^2 - 4\mu < 0$

$$u(\xi) = \frac{ki}{2} \sqrt{\lambda^2 - 4\mu} \times \left(\frac{-C_1 \sin{\frac{1}{2}} \sqrt{4\mu - \lambda^2} \xi + C_2 \cos{\frac{1}{2}} \sqrt{4\mu - \lambda^2} \xi}{C_1 \cos{\frac{1}{2}} \sqrt{4\mu - \lambda^2} \xi + C_2 \sin{\frac{1}{2}} \sqrt{4\mu - \lambda^2} \xi}\right) - \frac{1}{2} (k\lambda i - 1 + \lambda)$$

When $\lambda^2 = 4\mu$

$$u(\xi) = \frac{kiC_2}{C_1 + C_2\xi},$$

And for $a_1 = -ki$ we have

$$\alpha_0 = \frac{1}{2i} (k\lambda - i)$$

$$v = -\frac{1}{2} (k^2 \lambda^2 - 4k^2 \mu + 1)$$

$$c = \frac{1}{4} (-4k^2 \mu + 1 + k^2 \lambda^2)$$

In this case we obtain three travelling wave solution as previous section in following form:

When $\lambda^2 - 4\mu > 0$

$$u(\xi) = \frac{-ki}{2} \sqrt{\lambda^2 - 4\mu} \times \left(\frac{C_1 \sinh \frac{1}{2} \sqrt{\lambda^2 - 4\mu} \xi + C_2 \cosh \frac{1}{2} \sqrt{\lambda^2 - 4\mu} \xi}{C_1 \cosh \frac{1}{2} \sqrt{\lambda^2 - 4\mu} \xi + C_2 \sinh \frac{1}{2} \sqrt{\lambda^2 - 4\mu} \xi}\right) + \frac{1}{2} (k\lambda i + 1 - \lambda)$$

Where $\xi = k(x + y + \frac{1}{2}(k^2\lambda^2 - 4k^2\mu + 1)t)$. C_1 and C_2 are arbitrary constants.

In particular, if $C_1 \neq 0$, $C_2 = 0$, $\lambda > 0$, $\mu = 0$, μ , become

$$u(\xi) = \frac{-k\lambda i}{2} tgh \frac{1}{2} \lambda \xi + \frac{1}{2} (k\lambda i + 1 - \lambda)$$

When $\lambda^2 - 4\mu < 0$

$$u(\xi) = \frac{-ki}{2}\sqrt{\lambda^2 - 4\mu} \times (\frac{-C_1\sin\frac{1}{2}\sqrt{4\mu - \lambda^2}\xi + C_2\cos\frac{1}{2}\sqrt{4\mu - \lambda^2}\xi}{C_1\cos\frac{1}{2}\sqrt{4\mu - \lambda^2}\xi + C_2\sin\frac{1}{2}\sqrt{4\mu - \lambda^2}\xi}) + \frac{1}{2}(\mathbf{k}\lambda i + 1 - \lambda)$$

When $\lambda^2 - 4\mu = 0$

$$u(\xi) = \frac{-kiC_2}{C_1 + C_2\xi},$$

Negative Case: In this section by substituting the relations (8-10) in following negative type

$$(-v+1)u + 3u^2 - 2u^3 + k^2u'' + c = 0$$

And collecting all terms with the same power of (G'/G) together, the left-hand side of Eq. (8) is converted into another polynomial in (G'/G). Equating each coefficient of this polynomial to zero yields a set of simultaneous algebraic equations for a_1 , a_0 ν , λ , μ and c as positive case we have:

World Appl. Sci. J., 13 (4): 662-666, 2011

 $a_1 = \pm ki$

For $a_1 = ki$

$$\alpha_0 = \frac{1}{2} (k\lambda + 1)$$

$$v = \frac{1}{2} (4k^2\mu - k^2\lambda^2 + 5)$$

$$c = \frac{1}{4} (k^2\mu - k^2\lambda^2 + 1)$$

When $\lambda^2 - 4\mu < 0$

$$u(\xi) = \frac{\pm ki}{2}\sqrt{\lambda^2 - 4\mu} \times (\frac{C_1\sinh\frac{1}{2}\sqrt{\lambda^2 - 4\mu}\xi + C_2\cosh\frac{1}{2}\sqrt{\lambda^2 - 4\mu}\xi}{C_1\cosh\frac{1}{2}\sqrt{\lambda^2 - 4\mu}\xi + C_2\sinh\frac{1}{2}\sqrt{\lambda^2 - 4\mu}\xi}) + \frac{1}{2}(1\pm \mathrm{k}\lambda - \lambda)$$

Where $\xi = k(x+y-\frac{1}{2}(4k^2\mu-k^2\lambda^2+5)t)\cdot C_1$ and C_2 are arbitrary constants.

In particular, if $C_1 \neq 0$, $C_2 = 0$, $\lambda > 0$, $\mu = 0$, μ , become

$$u(\xi) = \frac{\pm k\lambda i}{2} tgh \frac{1}{2} \lambda \xi + \frac{1}{2} (1 \pm k\lambda - \lambda)$$

When $\lambda^2 - 4\mu < 0$

$$u(\xi) = \frac{\pm ki}{2} \sqrt{\lambda^2 - 4\mu} \times (\frac{-C_1 \sin\frac{1}{2} \sqrt{4\mu - \lambda^2} \xi + C_2 \cos\frac{1}{2} \sqrt{4\mu - \lambda^2} \xi}{C_1 \cos\frac{1}{2} \sqrt{4\mu - \lambda^2} \xi + C_2 \sin\frac{1}{2} \sqrt{4\mu - \lambda^2} \xi}) + \frac{1}{2} (1 \pm \mathbf{k} \lambda - \lambda)$$

When $\lambda^2 - 4\mu = 0$

$$u(\xi)=\frac{\pm kiC_2}{C_1+C_2\xi},$$

CONCLUSION

In this work we have seen that three types of travelling solutions of the Gardner-KP equation, the (G'/G)-expansion method has its own advantages: direct, concise, elementary that the general solutions of the second order LODE have been well known for the researchers and effective that it can be used for many other nonlinear evolution equations.

REFERENCES

- Hirota, R., 1980. Direct method of finding exact solutions of nonlinear evolution equations. R. Bullough, P. Caudrey (Eds.), Backlund transformations, Springer, Berlin, pp. 1157-1175.
- Wadati, M.,H. Sanuki and K. Konno, 1975. Relationships among inverse method, Backlund transformation and an infinite number of conservation laws. Prog. Theor. Phys., 53: 419-36.
- 3. Ablowitz, M.J. and P.A. Clarkson, 1991. Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge Univ. Press, Cambridge,

- Coely, A., 2001. Backlund and Darboux Transformations, American Mathematical Society, Providence, RI,
- Matveev, V.B. and M.A. Salle, 1991. Darboux Transformations and Solitons, Springer-Verlag, Berlin,
- Malfliet, W., 19921. Solitary wave solutions of nonlinear wave equations, Amer. J. Phys., 60: 650-654.
- Malfliet, W. and W. Hereman, 1996. The tanh method:
 I. Exact solutions of nonlinear evolution and wave equations, Physica. Scripta, 54: 563-568.
- 8. Ganji, D.D. and M. Abdollahzadeh, 2008. Exact travelling solutions for the Lax's seventh-order KdV equation by Sech method and rational Exp-Function method, Applied Mathematics and Computation,
- Engui Fan, Extended tanh-function method and its applications to nonlinear equations, Physics Letters. A 277: 212-218.
- Ji-Huan He and Xu-Hong Wu, 2006. Exp-function method for nonlinear wave equations, Chaos, Solitons and Fractals, 30: 700-708.
- 11. Ji-Huan He and M.A. Abdou, 2007. New periodic solutions for nonlinear evolution equations using Exp-function method, Chaos, Solitons and Fractals, 34: 1421-1429.

- Xu-Hong (Benn) Wu and Ji-Huan He, 2008. EXPfunction method and its application to nonlinear equations, Chaos, Solitons and Fractals, 38: 903-910.
- Ganji, Z.Z., D.D. Ganji and H. Bararnia, 2008. Approximate general and explicit solutions of nonlinear BBMB equations by Exp-Function method, Applied Mathematical Modeling (2008), in press, doi: 10.1016/j. apm. 2008.03.005.
- 14. Abdul-Majid Wazwaz, 2004. The sine-cosine method for obtaining solutions with compact and noncompact structures. Applied Mathematics and Computation, 159: 559-576.
- Abdul-Majid Wazwaz and M.A. Helal, 2006. Nonlinear variants of the BBM equation with compact and noncompact physical structures, Chaos, Solitons and Fractals, 26: 767-776.
- Abdul-Majid Wazwaz, 2004. A sine-cosine method for handling nonlinear wave equations. Mathematical and Com-puter Modeling. 40: 499-508.
- Shikuo Liu, Zuntao Fu, Shida Liu and Qiang Zhao, 2001. Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations, Physics Lett., A 289: 69-74.
- Zuntao Fu, Shikuo Liu, Shida Liu and Qiang Zhao, 2001. New Jacobi elliptic function expansion and new periodicsolutions of nonlinear wave equations, Physics Lett., A 290: 72-76.
- Ganji, D.D. and M. Abdollahzadeh, 2009. Exact traveling solutions of some nonlinear evolution equation by (G/G)- expansion method, J. Math. Phys., 50, 013519 (2009); doi:10.1063/1.3052847.

- Ganji, D.D. and M. Rafei, 2006. Solitary wave solutions for a generalized Hirota-Satsuma coupled KdV equation by homotopy perturbation method, Physics Lett., A 356: 131-137.
- 21. Ganji, D.D., 2006. The application of He's homotopy perturbation method to nonlinear equations arising in heat transfer, Physics Lett., A 355: 337-341.
- Ganji, D.D., G.A. Afrouzi and R.A. Talarposhti, 2007.
 Application of variational iteration method and homotopy- perturbation method for nonlinear heat diffusion and heat transfer equations, Physics. Lett., A 368: 450-457.
- Engui Fan and Hongqing Zhang, 1998. A note on the homogeneous balance method. Physics Lett., A 246: 403-406.
- Lixia Wang, Jiangbo Zhou and Lihong Ren, 2006. The Exact Solitary Wave Solutions for a Family of BBM Equation. International J. Nonlinear Sci., 1(??): 58-64.
- Abdul-Majid Wazwaz, 2002. Partial Differential Equations: Methods and Applications, Taylor & Francis,
- 26. A reliable modification of Adomian decomposition method, Applied Mathematics and Computation, 102(??): 77-86.
- Abdul-Majid Wazwaz, 2000. A new algorithm for calculating adomian polynomials for nonlinear operators, Applied Mathematics and Computation, 111(??): 33-51.