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Abstract: The aim of this study 1s to select the best design of polyethylene pipe to produce and then comparing
the traditional and Meta heuristic methods with each other. In concurrent engineering, design processes are
often complicated with multiple conflicting criteria and discrete sets of feasible alternatives. So this paper
proposes a design framework governed by MCDM techmque, which are in contlict in the sense of competing
for common resources to achieve variously different performance objectives such as financial, functional,
environmental, etc. The Pareto MCDM model and PSO algorithm are applied to polyethylene pipe concurrent
design governed by four criteria (Density, Tensile strength, Tmpact strength and Time) to determine the best
alternative design to Pareto-compromise design. Since, we want to select the best design among twelve designs
and Pareto gives a local optimized solution, we used PSO algorithm to solve the model and find the best
alternative. A model proposed to select the design and solved by PSO algorithm. The PSO algorithm showed
the best efficient solution and design 3 1s selected m comparison to Pareto method. At the end, applicable
suggestions were proposed for future studies.
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INTRODUCTION

Nowadays, global competition in providing new
products 18 very mtensive. The time needed for
providing product is an important distinction between
successful and unsuccessful comparies. Successful
comparies learn how to manage time and technological
advances. Concurrent Engineering, one of the tangible
progress in this field and has evolved as a technique. In
this  technique, engineering product design and
engineering  process  design  are  performed,
simultaneously. The implementation of CE is based on
teamwork to increase the efficiency of an organization. A
specialized team normally 15 responsible for performing
conceptual thinking, product design and production
planming, simultaneously. The aim of this method requires

individuals to consider all product life cycle factors which

include customers and suppliers' requirements such as
performance, quality, cost, program implementation,
maintenance [1]. A successful teamwork needs to
incorporate people from different departments such as
design, marketing, construction, purchase, financial
engineers. The team begins its work from the first stage
and continues the teamwork until the end of the project
[2]. A good communication plays an important role for
success of teamwork and it involves the relationship
between human and computer and both. There are some
disadvantages on the implementation of CE when
different people gather and wish to reach the same
objective. For instance, it is difficult to overcome the
barriers between design and manufacturing just by
gathering people.
commurnication and flexibility, which 1s difficult n some

Concurrent  design also requires

cases to achieve. One alternative to overcome to such
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difficulties is to use MCDM techniques to find a good
trade-off among various objectives [3]. Agrell [4] used
MCDM technique to form a modern methodology for
collaborating among various departments in the product
development process. He presented a non-linear
compromise programming algorithm with sinplified
operation as a support for lus proposed methodology. O1
et al. [5] proposed a case retrieval technique combined
with similarity measurement and MCDM techmques for
concurrent design. In their implementation, they used a
hybridization of fuzzy similarity measurement (FSM) and
fuzzy MCDM for case retrieval from historical cases for
concurrent design. During the first stage, FSM uses
triangular  function to represent various fuzzy
requirements, respectively and measures the similarity,
which helps remove less valuable cases. Then fuzzy
MCDM is incorporated for the assessment of the most
similar cases in terms of product criteria to pick out the
most suitable case. They also implemented the proposed
model to power transformer concurrent design and
reported that the proposed model could be useful for case
retrieval. Liu [6] used quality deployment function (QFD)
and fuzzy MCDM for product design and development. In
this study, Liu integrates fuzzy QFD and the prototype
product selection system to present a product design and
selection (PDS) approach. In fuzzy QFD, the ¢-cut
operation is used to measure the fuzzy set of each
component. The method engineering
characteristics and the factors involved in product

also  uses
development for prototype product selection. The method
also uses a fuzzy MCDM method to select the best
prototype product.

Valle and Vasquez-Bustelo [7] analyzed the lnk
between the use of CE and success in new product
development (NPD) under different circumstances of
uncertainty and complexity, radical versus incremental
innovations. They concluded that overlapping activities,
wnter-functional ntegration and teamwork positively could
affect NPD performance based on development time and
new product superiority for the case of incremental
innovations and based on development cost in the case
of radical mnovations. They also concluded that CE
should be used m the context or particular conditions,
which characterize each innovation process. Grierson and
Khajehpour [8] used genetic algorithm as a meta-heuristic
method for design of office buildings. Koski [9] used
heuristic method to select an appropriate design method.
Grierson [10] developed a new method for NPD using
multiple objective criteria, which are conflicting in the
sense of competing for common resources to achieve
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variously different performance objectives such as
financial, functional, environmental, etc. The proposed
MCDM strategy employs a tradeoff-analysis method to
identify compromise designs for which the competing
criteria are met in a Pareto-optimal sense. Grierson's
MCDM techmque was mutially developed for the case of
design govermned by two objective criteria. It 1s then
extended to design governed by more than two objective
criteria, by presenting the concept of primary and
aggregate criteria. There are some evidences to believe
that from mfinite number of feasible designs forming the
Pareto front for a design problem governed by #
independent objective criteria, there is a unique Pareto-
compromise design which represents a mutually agreeable
tradeoff among all # criteria. Grierson demonstrated this
1dea for a flexural plate design governed by two criteria, a
bridge  maintenance-intervention  protocol  design
governed by three criteria and a media centre envelops
design governed by eleven criteria. Alem Tabriz [21] also
has applied the Pareto-MCDM technique and CE to
design pipes.

In this paper, we present an empirical method for the
case study of concurrent engineering for designing the
pipes based on the implementation of the method
proposed by Grierson. The presentation of this paper first
proposes Grierson's method and P3O algorithm in section
2 and the implementation of the case study is
demonstrated in section 3. Fmally, concluding remarks are
given in section 4 to summarize the contribution of the

paper.

Pareto Optimal Method

Pareto Optimal Definition: In Multi-objective problems,
a feasible solution, A, is called Pareto optimal if there is
another feasible solution which 1s better than A4 at least in
terms of another objective. An optimal troubleshooting

issue Pareto with # objective functions can be
demonstrated as follows:
min{ (), f,(2)}
subject to
zEW, @

Where £ (z) to f, (z) are design objective functions based
on different variables shown as technical vector topics as
z. Let z'be the Pareto optimal solution then there exists k
objective fumctions such that we have,
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Two Criteria Pareto Technique: Let 4 and B be two
designers who are completely in conflict with each other.
Obviously, increasing on one objective function could
result on losing optimality in other one, 1.e.

fi* :(fimin:___’flmax), N f; :(fzmaxa___:fzmin). (3)
In other words, let fi*,izl,'—rm be the vector of

Pareto optimal solutions, therefore we have,

#

* *
fi,j Sji,j-Fl’ fl

Once the Pareto optimal solutions are determined, we
may scale them using the following,
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The Grierson's Two-dimensional Method: The first step
of the proposed method developed by Grierson is to
normalize all design alternatives using Eq. (5) and transfer
the resulted normalized data mto a two dimensional space
by mtroducing the following,

3
2% ©
yi:%; i=l-n
Next, we calculate x” and ¥ using the following,
¥ X+ 5; » Yyt 5y
Y TAvs, T 1ve, )
£ ¥
Where 5x:\ﬁ(7‘max*xmin)*xmax and

8, = ﬁ(ymax ~ Vin )~ Y- D85€d on Grierson's method,

the efficient design yields equal values for x'and y". The
relative importance of each attribute is calculated as

follow,
() + X X+ ¥pa)
Axg = Ay =05 -2t S (])
xj+xj+l+y_; Jrijrl
Ary =2Ax, = 2 Ay, )]
0 _ pmax max min '\/E
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In real-world case studies, we choose the alternatives
with relatively close amount of values for x"and y”" For
more details on Grierson's method, the interested readers
are referred to read his article.
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Particle Swarm Optimizations (PSO): PSO is a powerful
evolutionary algorithm used for finding global selution to
a multidimensional problem. PSO 13 a population based
optimization tool, where the system is mitialized with a
population of random particles and the algorithm searches
for optima by updating generations [11]. Suppose that the
search space 18 D-dimensional. The position of the i-th
particle can be represented by a D-dimensional vector Xi
= (x,;,; xi2;... x5) and the velocity of this particle is i
=(vil; vi2;... ; viD). The best previously visited position of
the i-th particle is represented by Pi = (pil; pi2 ... ; pil})
and the global best position of the swarm found so far is
denoted by Pg = (pgl; pg2 ... ; pgi?). The fitness of each
particle can be evaluated through putting its position mto
a designated objective function. The particle's velocity
and 1ts new position are updated as follows:

Vit =o'+ an (ply - X))+ o (phy - i)

(11)

t+l t+1

Nd T Mg t Vg (12)

Where € {1,2,...D}, T € {1,2,..N} Nis the population size,
the superscript ¢ denotes the iteration number, w is the
inertia weight, #1 and #2 are two random values in the
range [0 1], ¢l and ¢2 are the cogmtive and social scaling

parameters which are positive constants.
Pseudocode for PSO algorithm is as below:

FOR each particle i
FOR each dimension d
Tnitialize p osition xid randomly within permissible range
Tnitialize velocity vid randomly within permissible range
End FOR
END FOR
Tteration t=1
DO
FOR each particle i
Calculate fitness value
IF the fitness value is better than p_best,, in history
Set current fitness value as the p_best,;
END IF
END FOR
Choose the particle having the best fitness value as the g_bestd
FOR each particle i
FOR each dimension d
Calculate velocity according to the equation
vigt =o' + e (ply — )+ an (Phs —xly)
Update particle position according to the equation

Mt ++1
N = g T Vg
END FOR
END FOR
t=t+1

WHILE maximurn iterations or minimum error criteria are not attained

Fig. 1: Pseudocede for PSO algorithm
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Tt should be noted that there are plethora of
researches in the field of Meta-heuristics. For example
Alem-Tabriz et al [12] have used Simmidated Annealing
Algorithm m flow shop scheduling. Kulkarm and
Venayagamoorthy [13] have used Particle Swarm
Optimization for  distribution  estimaton.  Also
Khorshidian et af. [14] has used Genetic Algorithm (GA)
for JIT single machine scheduling. Mohammed Arafa et al
[15] used Neural Networlk Models for Predicting Shear
Strength. Khamis et al [16] used neural networks for Oil
Palm Modeling. Hemane et al. [17] measured the
performance of an asynchronous algorithm of Particle
Swarm Optimization for Scheduling Problem. For more
case studies refer to [18-20].

Case Study: The case study of this paper 15 a
real-world application of one of Iraman pipe
production called Vahid Industrial Group (VIG) and it
15 located in one of Northemn provinces of Iram,
Mazandaran. The company produces polyethylene
pipes in various diameters up to 250 mm size and the
factory maintains a capacity of 500 tones. The firm's
management considers the technological capabilities
and competitive

pipes. Therefore, a team composed of design staff,

factors for producing polyethylene

marketing and production 1s gathered to select an
appropriate design of the pipe m a concurrent engineering
process.

Since the concurrent team members were {Tom
different fields, it was mmportant to establish a synergy
among these people such that we could end up having
common criteria to be measured for our study. Three
groups of criteria are considered as the most important
affecting factors which are cost, quality and capacity.

Table 1: Input data

Quality factor is considered by marketing and design
sectors and cost 13 comsidered by production and
financial sectors and production rate 15 considered by
marketing and production sectors. A comprehensive
review on all mfluencing factors reveals that there are
different important factors influencing the selection of our
final design. This includes flammable, color, density,
tensile strength, yield stress, coefficient of flexibility,
elongation, impact strength, thermal conductivity,
hardness and PH range. Since there is a limit on the
budget of this research study, we have selected density,
two pressure factors and the amount of time needed to
one meter 1 each design alternative as the most essential
factors. Table 1 summarizes the input data of these four
attributes for twelve design alternatives.

Note that the first objective, density, is on the form
of the maximization and the other three are of the forms of
minimization. Therefore, we need to consider a negative
sign for them.

For the case study of our proposed model we first
normalize all four criteria based on Eq. (5) and transfer
them into two dimensional space using Eq. (6) and Eq. (7)
which are summarized in Table 2.

The relative importance of each attributes is calculated
based on Eq. (8-10) as follows,

AV =0938705, 72 =183545, #2=15.7324, f) =7.48865.

As we can observe, design number & 1s the preferred
one based on density characteristic, design number 5 1s
the preferable one based on tensile strength, design
numbers 9 and 7 are also considered the best based on
impact strength and production rate, respectively.

Product features
Designs # Density (gr/cm’) Tensile strength {20%)(N/mm?) Tmpact strength (Kg/mm?) Time
1 92.0 22 25 11
2 925.0 8.22 23 2.10
3 93.0 1.23 5.21 8.9
4 937.0 3.23 19 9
5 941.0 9.23 18 3.8
6 944.0 3.24 517 7
7 946.0 25 16 9
8 95.0 3.26 2.15 5.9
9 956.0 4.27 5.14 10
10 958.0 28 8.13 5.10
11 961.0 1.29 13 11
12 9635.0 30 12 6.11
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Table 2: The coordinate PC' curve in two dimensional spaces

Density Tensile strength Tmpact strength Time

(gr/om®) (207)(N/mir’) (Kg/mmr*)

D# X T D# X* T D# X* T D# X Y

12 0.292893 1 1 0.292893 1 12 0.292893 1 1 0.292893 1

1 0.385125 0.891688 2 0.372443 0.679555 11 0.401679 0.674116 2 0.385125 0.722596

11 0.385125 0.832476 3 0.46967 0.629183 10 0.483268 0.62941 3 0.385125 0.699253

10 0.461984 0.813892 4 0.522703 0.616491 9 0.61925 0.623517 4 0.461984 0.680668

2 0.5081 0. 757903 5 0.61993 0.57818 8 0.673643 0.58022 5 0.5081 0.6503

9 0.538843 0.716241 & 0.734835 0.548303 7 0.700839 0.553063 6 0.538843 0.624009

3 0.569587 0.658173 7 0. 796707 0.510859¢ 6 0.782429 0.52219 7 0.569587 0.576189

8 0.615703 0.600558 8 0.832062 0.491545 5 0.825943 0.473641 8 0.615703 0.528822

4 0.692562 0.534646 9 0.885095 0.458042 4 0.864018 0.42586 9 0.692562 0.478282

7 0.692562 0.446021 10 0.902773 0.387095 3 0.902003 0.382563 10 0.692562 0.415277

5 0.800165 0.386415 11 0.929289 0.359899 2 0.945607 0.350153 11 0.800165 0.355672

6 1 0.292893 12 1 0.292893 1 1 0.292893 12 1 0.292893

Di#: Design number, Bold numbers are used in Eq. (9) for the calculation of the relative importance of each attribute.

Table 3: The MSE results

D# 1 2 3 4 5 6 7 8 9 10 11 12

MSE 81 5004 68 5160 5183 5227 5260 55 5379 5377 5443 550945
One unportant question 1s to find the best possible St:

alternative based on four attributes. There are different 12

methods to choose the appropriate alternative design 1s Z %=1 (15)

1

to use mean square error (MSE) as follows,

Loy

Where f; are the attributes associated with different design
altermatives given in Table 1 and / 1s the result of the
implementation of Grierson .
results of our MSE for all twelve alternative designs.

1 i
MSEJ:;Z(l— (13)
i=1
Table 3 summarizes the
As we can observe from Table 3, alternative 8
represents the mmimum MSE and it 1s chosen as the best
design alternative and alternative 3 and 1 come after with

relatively small MSE difference.

For entering the data to PSO algorithm we define the
proposed model as below:

12 4
MaxZ = Z ZDsz
=l ;=1
12 4
MinZ = Z ZTnj,xl
i=1 ;=1
12 4
MinZ = > Im;x
i=1 ;=1

12 4
MinZ =37 D Tix,
i=1 ;=1

(14)
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So the results of proposed model will be as below:

A =0998971, £ =7.1045, £ =5.6512, £ =1.00876.

Table 4 I's Showing the Mse for Proposed Model:
And for designs we have:
u=1lx,=0

According to proposed model, the design number 3
will be selected. As compared to Grierson's model, we see
that this approach is more efficient than Grierson's
method.

In this paper,
method for case study of polyethylene pipes. The primary

we have presented an empirical

aim of this research was to choose an alternative design
among various available one. In our study, we gathered
different team members in a concurrent engineering team
who were actively working for a pipeline production and
chose the most important factors involved in designing
pipeline.

We have also used Grierson's two-dimensional
MCDM method and PSO algorithm to find the most
appropriate design alternative based on various attributes
and used a mean square error to rank different alternatives
based on all existing criteria. As it 1s shown m table3 the
MSE for proposed model (Eq.14) that is solved by particle
swarm optimization 1s less than Grierson's method.
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The first function is to maximize the density and other functions are minimizing tensile strength, impact strength and time respectively.
FOR each particle i

FOR each dimension d

Tnitialize position x,; randomly within permissible range
Tnitialize velocity w,; randomly within permissible range

End FOR

END FOR

Iteration t=1

DO

FOR each particle i

Calculate fitness value

IF the fitness value is better than p_best,; in history

Set current fitness value as the p best,;

ENDIF

END FOR

Choose the particle having the best fitness value as the g best;
FOR each particle i

FOR each dimension &

Calculate velocity according to the equation

tl_ gt feot ot tog t
Vig =@V oA (P =) 017 (P — %)

Update particle position according to the equation,
xif;rl =zl V}afl get dth dimension of PRO-particle

Compute weights it Gaussian finctions in kernel wi
Select a Gaussian function gi from kemel according to pi
Sample gi to get ath dimension of Hybrid Pareto-particle
END FOR

END FOR

FOR each particle i

Evaluate fitness of ith PSO-Particle

Evaluate fitness of ith Hybrid Pareto -Particle

IF fitness(PSO-Particle) < fitness (Hybrid Pareto -Particle)
x(t+1) =PSO-Particle

ELSE

xrt+1) =Hybrid Pareto -Particle

ENDIF

END FOR

=+l

WHILE maximum iterations or minimum error criteria are not attained

Fig. 2: Pseudocode for Hybrid Pareto Algorithm

Table 4: The MSE results

D# 1 2 3 4 5 6 7 8 9 10 11 12
MSE 54 2000.34 13 3890 2870 4310 170043 30 3294 1843.2 4620 2304394
CONCLUSIONS applied for any tradeoff/bargaining scenario that involves

multiple conflicting criteria and parties. P3O algorithm

The PSO-Algorithm and corresponding Pareto- have successfully ran and developed for this study.
MCDM computational procedure resolve an important For futwre study we suggest to apply other Meta-
1ssue related to multi-criteria decision making, that of  heuristic methods, as Genetic Algorithm, Bee Colony and
rigorously selecting a compromise design from among a  4nt Colony and compare the result with this method to
potentially large number of alternative feasible designs. extend the research.

The results indicated that proposed method
(Equation 14) could be easily used for problems with REFERENCES
various alternative designs, successfully. The Particle
Swarm Optimization procedure is applicable for solving all 1. Winner, RI, IP. Pemell, HE. Bertend and

mathematical models of design from conceptual to M.M.G. Slusarczuk, 1988. The role of concurrent
detailed, across the entire spectrum of engineering engineering in weapon system acquisition, Institute
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