Modified Decomposition Method for E-W Equation

Syed Tauseef Mohyud-Din, Ahmet Yıldırım and M. M. Hosseini

Department of Mathematics, HITEC University Taxila Cantt, Pakistan
Ege University, Science Faculty, Department of Mathematics, 35100 Bornova- Izmir, Turkey
Department of Mathematics, Yazd University, Iran

Abstract: A relatively new algorithm which is called the modified decomposition method (MDM) is applied to find an analytical solution for Equal-width wave (E-W) equation which play an important role in fluid flows, plasma physics, electrostatic potential and applied sciences. Numerical results explicitly reveal the complete reliability and efficiency of the proposed algorithm (MDM).

PACS: 02.30 Jr · 02.00.00
Key words: Modified decomposition method · Nonlinear problems · Physical problems · Equal-width wave equation

INTRODUCTION

The equal-width wave equation is of great significance in the diversified nonlinear physical problems related to physics, astrophysics, fluid flows, plasma physics, electrostatic potential and applied sciences [1-17]. Several techniques including fourth-order Runge-Kutta, least square finite element, Sink-Galerkin and Variational iteration have been employed to solve such equations analytically and numerically, see [1-3, 5-12, 17] and the reference therein. Most of these used schemes are coupled with the inbuilt deficiencies. Recently, Gejji and Jafari [4] introduced modified decomposition method (MDM) to solve a wide class [4, 13-16] of initial and boundary value problems. In the present study, we apply this reliable algorithm (MDM) to find an analytical solution of equal-width wave (E-W) equation. It is shown that the proposed method (MDM) provides the solution in a rapid convergent series with easily computable components. The proposed modified decomposition method (MDM) [4] is applied without any discretization, perturbation, transformation or restrictive assumptions and is free from round off errors, calculation of the so-called Adomian’s polynomials and the identification of Lagrange multipliers. Numerical results show the complete reliability and efficiency of the proposed technique. Moreover, the proposed MDM is easier to implement and reduces the computational work while still maintaining a higher level of accuracy.

Modified Decomposition Method (MDM): Consider the following general functional equations:

\[f(x) = 0, \quad (1) \]

To convey the idea of the modified decomposition method [4], we rewrite the above equation as:

\[y = N(y) + c, \quad (2) \]

Where N is a nonlinear operator from a banach space \(B \rightarrow B \) and \(f \) is a known function. We are looking for a solution of equation (1) having the series form:

\[y = \sum_{i=0}^{\infty} y_i, \quad (3) \]

The nonlinear operator \(N \) can be decomposed as

\[N\left(\sum_{i=0}^{\infty} y_i\right) = N(0) + \sum_{i=0}^{\infty} \left[N\left(\sum_{j=0}^{i-1} y_j\right) - N\left(\sum_{j=0}^{i-1} y_j\right) \right], \quad (4) \]

From equations (3) and (4), equation (2) is equivalent to

\[\sum_{i=0}^{\infty} y_i = c + N(0) + \sum_{i=0}^{\infty} \left[N\left(\sum_{j=0}^{i-1} y_j\right) - N\left(\sum_{j=0}^{i-1} y_j\right) \right], \quad (5) \]

Corresponding Author: Dr. Syed Tauseef Mohyud-Din, Department of Mathematics, HITEC University Taxila Cantt, Pakistan. E-mail: syedtauseef@gmail.com.
We define the following recurrence relation:

\[
\begin{align*}
 y_0 & = c, \\
 y_1 & = N(y_0), \\
 y_{m+1} & = N(y_0 + \ldots + y_m) - N(y_0 + \ldots + y_{m-1}), \quad m = 1, 2, 3, \ldots ,
\end{align*}
\]

(6)

then

\[
y_1 + \ldots + y_{m+1} = N(y_0 + \ldots + y_m), \quad m = 1, 2, 3, \ldots ,
\]

and

\[
y = f + \sum_{i=1}^{\infty} y_i,
\]

if \(N\) is a contraction, i.e., \(|N(x) - N(y)| \leq \|x - y\|, \quad 0 < K < 1\), then

\[
\|y_{m+1}\| = |N(y_1 + \ldots + y_m) - N(y_0 + \ldots + y_{m-1})| \leq K\|y_m\| \leq K^n\|y_0\|,
\]

\[
m = 0, 1, 2, 3, \ldots ,
\]

and the series \(\sum_{i=1}^{\infty} y_i\) absolutely and uniformly converges to a solution of equation (1) [4, 13-16], which is unique, in view of the Banach fixed-point theorem.

Solution Procedure: Consider the following equal-width wave (E-W) equation

\[
u_t + \nu u_x - \nu u_{xxx} = 0,
\]

with initial condition

\[
u(x, 0) = 3\sec h^2\left(\frac{x-15}{2}\right).
\]

The exact solution is given by

\[
u(x, t) = 3\sec h^2\left(\frac{x-15-t}{2}\right).
\]

Applying the modified decomposition method (MDM), we get

\[
u_{n+1}(x, t) = \nu_n - \int_0^t \left(\nu_n \frac{\partial \nu_n}{\partial x} - \frac{\partial^3 \nu_n}{\partial x^3} \right) dx
\]

Consequently, following approximants are obtained

\[
u_0(x, t) = 3\sec h^2\left(\frac{x-15}{2}\right),
\]

\[
u_1(x, t) = 3\sec h^2\left(\frac{x-15}{2}\right) + \left(9\sec h^4\left(\frac{x-15}{2}\right) \tan h\left(\frac{x-15}{2}\right) \right) t,
\]

\[
u_2(x, t) = 3\sec h^2\left(\frac{x-15}{2}\right) + \left(\sec h^4\left(\frac{x-15}{2}\right) \right) \left(\frac{135}{2} \tan h^2\left(\frac{x-15}{2}\right) - \frac{45}{2} \tan\left(\frac{x-15}{2}\right) \right) t + \left(\sec h^6\left(\frac{x-15}{2}\right) \right) \left(\frac{189}{4} \tan h^2\left(\frac{x-15}{2}\right) + \frac{27}{4} \right) t^2 + \left(\sec h^8\left(\frac{x-15}{2}\right) \right) \left(\frac{135}{16} \tan h^3\left(\frac{x-15}{2}\right) - \frac{27}{2} \tan h\left(\frac{x-15}{2}\right) \right) t^3 + \ldots
\]

The series solution is given by

\[
u(x, t) = 3\sec h^2\left(\frac{x-15}{2}\right) + \left(\sec h^4\left(\frac{x-15}{2}\right) \right) \left(\frac{135}{2} \tan h^2\left(\frac{x-15}{2}\right) - \frac{45}{2} \tan\left(\frac{x-15}{2}\right) \right) t + \left(\sec h^6\left(\frac{x-15}{2}\right) \right) \left(\frac{189}{4} \tan h^2\left(\frac{x-15}{2}\right) + \frac{27}{4} \right) t^2 + \left(\sec h^8\left(\frac{x-15}{2}\right) \right) \left(\frac{135}{16} \tan h^3\left(\frac{x-15}{2}\right) - \frac{27}{2} \tan h\left(\frac{x-15}{2}\right) \right) t^3 + \ldots
\]

1005
Table 1: (Error Estimates)

<table>
<thead>
<tr>
<th>t</th>
<th>$x = 0$</th>
<th>$x = 5$</th>
<th>$x = 10$</th>
<th>$x = 15$</th>
<th>$x = 20$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>3.668E-9</td>
<td>5.382E-7</td>
<td>3.611E-5</td>
<td>5.137E-5</td>
<td>3.605E-5</td>
</tr>
<tr>
<td>0.002</td>
<td>7.333E-9</td>
<td>1.075E-6</td>
<td>7.228E-5</td>
<td>2.055E-5</td>
<td>7.205E-5</td>
</tr>
<tr>
<td>0.003</td>
<td>1.099E-8</td>
<td>1.612E-6</td>
<td>1.085E-4</td>
<td>4.623E-5</td>
<td>1.080E-4</td>
</tr>
<tr>
<td>0.004</td>
<td>1.465E-8</td>
<td>2.149E-6</td>
<td>1.448E-4</td>
<td>8.220E-5</td>
<td>1.438E-4</td>
</tr>
<tr>
<td>0.005</td>
<td>1.830E-8</td>
<td>2.685E-6</td>
<td>1.811E-4</td>
<td>1.284E-4</td>
<td>1.797E-4</td>
</tr>
<tr>
<td>0.01</td>
<td>3.652E-8</td>
<td>5.357E-6</td>
<td>3.637E-4</td>
<td>5.137E-4</td>
<td>3.580E-4</td>
</tr>
</tbody>
</table>

*Error = Exact solution – Series solution

CONCLUSION

In this paper, we applied modified decomposition method (MDM) to solve equal-width wave equation. Numerical results clearly reveal the complete reliability and efficiency of the proposed algorithm (MDM).

ACKNOWLEDGMENT

The author is highly grateful to Brig (R) Qamar Zaman, Vice Chancellor HITEC University for providing excellent research environment and facilities.

REFERENCES