Application of Homotopy Perturbation Method on Some Linear and Nonlinear Periodic Equations

R. Taghipour

Department of Civil Engineering,
Islamic Azad University, Qaemshahr Branch, Qaemshahr, Iran

Abstract: In this paper, the homotopy perturbation method (HPM) which doesn’t small parameter is applied to solve the linear and nonlinear parabolic equations. The HPM deforms a difficult problem into a simple problem which can be easily solved. It is implemented with appropriate initial conditions. Comparison of the applied methods with exact solutions reveals that the method is tremendously effective.

Keywords: Homotopy perturbation method · Parabolic equations · Periodic equation · Linear and nonlinear

INTRODUCTION

The homotopy perturbation method (HPM) was first proposed by the Chinese mathematician Ji-Huan He [1-3]. Unlike classical techniques, the homotopy perturbation method leads to an analytical approximate and exact solutions of the nonlinear equations easily and elegantly without transforming the equation or linearizing the problem and with high accuracy, minimal calculation and avoidance of physically unrealistic assumptions. As a numerical tool, the method provide us with numerical solution without discretization of the given equation and therefore, it is not effected by computation round-off errors and one is not faced with necessity of large computer memory and time. This technique has been employed to solve a large variety of linear and nonlinear problems [4-10].

In the present study, homotopy perturbation method has been applied to solve the parabolic equations. The numerical results are compared with the exact solutions. It is shown that the errors are very small. However, recently, Adomian decomposition method has was applied for approximating the solution of the parabolic equations [11].

Applications of HPM: In this section, we demonstrate the main algorithm of homotopy perturbation method on linear and nonlinear parabolic equations with initial condition, namely we consider:

\[
\frac{du}{dt} = \frac{d^2u}{dx^2} + \phi(u) + g(x,t), (x,t) \in [a,b] \times (0,T)
\]
(1)

With the initial condition

\[u(x,0) = f(x) \]
(2)

Where \(\phi \) is a function of \(u \). We are looking for the solution satisfying Eqs. (1) - (2).

Example 1: This problem was used by Hopkins and Wait [12] to provide an example of a problem with a nonlinear source term:

\[g(x,t) = 0, f(x) = Ln(x + 2) \]

\[
\frac{du}{dt} = \frac{d^2u}{dx^2} + e^{-u} + e^{-2u}, (x,t) \in [a,b] \times (0,T)
\]
(3)

With the initial condition \(u(x,0) = Ln(x + 2) \). In this example we have \(\phi(u) = e^{-u} + e^{-2u} \).

We Construct the Following Homotopy:

\[
\frac{du}{dt} - \frac{du_0}{dt} = p\left(\frac{d^2u}{dx^2} + e^{-u} + e^{-2u} - \frac{du_0}{dt}\right)
\]
(4)

Assume the solution of Eq. (4) to be in the form:

\[u = u_0 + pu_1 + p^2u_2 + p^3u_3 + \ldots \]
(5)
Substituting (5) into (4) and equating the coefficients of like powers p, we get the following set of differential equations:

\[
p^0: \frac{du_0}{dt} - \frac{du_0}{dt} = 0
\]

\[
p^1: \frac{du_1}{dt} = \frac{d^2u_0}{dx^2} + e^{-u_0} + e^{2u_0} \cdot \frac{du_0}{dt}
\]

\[
p^2: \frac{du_2}{dt} = \frac{d^2u_1}{dx^2} + u_1(-e^{-u_0} - 2e^{2u_0})
\]

\[
p^3: \frac{du_3}{dt} = \frac{d^2u_2}{dx^2} + (-u_2 + \frac{1}{2}v_1^2)e^{-u_0} + (-2u_2 + 2u_1^2 - \frac{1}{48}u_2u_1^2)e^{-2u_0}
\]

Solving the above equations, we obtain

\[
u_0 = \ln(x + 2),
\]

\[
u_1 = \frac{t}{x + 2},
\]

\[
u_2 = \frac{-t^2}{2(x + 2)^2},
\]

\[
u_3 = \frac{t^3}{3(x + 2)^3},
\]

\[u_n = \frac{(-1)^{n+1}t^n}{n(x + 2)^2},
\]

Therefore from the results we can obtain

\[
u(x, t) = \ln(x + 2) + \frac{t}{x + 2} - \frac{t^2}{2(x + 2)^2}
\]

\[
+ \frac{t^3}{3(x + 2)^3} + \ldots + \frac{(-1)^{n+1}t^n}{n(x + 2)^2} + \ldots
\]

\[
= \ln(x + 2) + \ln\left(\frac{t}{x + 2} + 1\right) = \ln(x + t + 2)
\]

Which is the exact solution of the problem. The absolute error for various values of x, t and M (number of terms) are also tabulated in Table 1.
Table 1: Absolute error for various values of x, t and M (number of terms) for test problem 1.

<table>
<thead>
<tr>
<th>x/t</th>
<th>0.2</th>
<th>0.4</th>
<th>0.6</th>
<th>0.8</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>M=5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>8.7288E-8</td>
<td>5.2113E-6</td>
<td>5.5632E-5</td>
<td>2.9414E-4</td>
<td>0.0011</td>
</tr>
<tr>
<td>0.4</td>
<td>5.2100E-8</td>
<td>3.1268E-6</td>
<td>3.3532E-5</td>
<td>1.7801E-4</td>
<td>6.4360E-4</td>
</tr>
<tr>
<td>0.6</td>
<td>3.2396E-8</td>
<td>1.9530E-6</td>
<td>2.1027E-5</td>
<td>1.1202E-4</td>
<td>4.0630E-4</td>
</tr>
<tr>
<td>0.8</td>
<td>2.0859E-8</td>
<td>1.2624E-6</td>
<td>1.3640E-5</td>
<td>7.2890E-5</td>
<td>2.6512E-4</td>
</tr>
<tr>
<td>1</td>
<td>1.3842E-8</td>
<td>8.4059E-7</td>
<td>9.1099E-6</td>
<td>4.8819E-5</td>
<td>1.7801E-4</td>
</tr>
<tr>
<td>M=10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>2.9388E-13</td>
<td>5.5942E-10</td>
<td>4.5169E-8</td>
<td>1.0028E-6</td>
<td>1.0989E-5</td>
</tr>
<tr>
<td>0.4</td>
<td>1.1369E-13</td>
<td>2.1740E-10</td>
<td>1.7638E-8</td>
<td>3.9323E-7</td>
<td>4.3255E-6</td>
</tr>
<tr>
<td>0.6</td>
<td>4.6851E-14</td>
<td>9.1057E-11</td>
<td>7.4176E-9</td>
<td>1.6601E-7</td>
<td>1.8321E-6</td>
</tr>
<tr>
<td>0.8</td>
<td>2.1094E-14</td>
<td>4.0656E11</td>
<td>3.3245E-9</td>
<td>7.4639E-8</td>
<td>8.2616E-7</td>
</tr>
<tr>
<td>M=20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>2.2204E-16</td>
<td>3.3307E-16</td>
<td>5.2625E-14</td>
<td>2.1011E-11</td>
<td>2.1403E-9</td>
</tr>
<tr>
<td>0.4</td>
<td>1.1102E-16</td>
<td>6.6613E-16</td>
<td>9.1038E-15</td>
<td>3.4533E-12</td>
<td>3.5318E-10</td>
</tr>
<tr>
<td>0.6</td>
<td>4.4409E-16</td>
<td>2.2204E-16</td>
<td>1.5543E-15</td>
<td>6.5525E-13</td>
<td>6.7235E-11</td>
</tr>
<tr>
<td>0.8</td>
<td>2.2204E-16</td>
<td>2.2204E-16</td>
<td>2.2204E-16</td>
<td>4.0783E-13</td>
<td>1.4458E-11</td>
</tr>
<tr>
<td>1</td>
<td>2.2204E-16</td>
<td>6.6613E-16</td>
<td>6.6613E-16</td>
<td>3.4195E-14</td>
<td>3.4537E-12</td>
</tr>
</tbody>
</table>

Table 2: Absolute error for various values of x, t, p and M (number of terms) for test problem 2

<table>
<thead>
<tr>
<th>x/t</th>
<th>0.2</th>
<th>0.4</th>
<th>0.6</th>
<th>0.8</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>M=20,p=1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>4.9449E-13</td>
<td>3.5554E-12</td>
<td>5.4122E-10</td>
<td>2.3279E-11</td>
<td>2.4691E-10</td>
</tr>
<tr>
<td>0.4</td>
<td>8.0003E-13</td>
<td>5.7551E-12</td>
<td>8.7571E-10</td>
<td>3.7667E-11</td>
<td>3.9951E-10</td>
</tr>
<tr>
<td>0.6</td>
<td>8.0025E-13</td>
<td>5.7527E-12</td>
<td>8.7571E-10</td>
<td>3.7667E-11</td>
<td>3.9951E-10</td>
</tr>
<tr>
<td>0.8</td>
<td>4.9438E-13</td>
<td>3.5553E-12</td>
<td>5.4122E-10</td>
<td>2.3280E-11</td>
<td>2.4691E-10</td>
</tr>
<tr>
<td>M=10,p=2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>1.0967E-10</td>
<td>2.0841E-7</td>
<td>1.7609E-5</td>
<td>4.0750E-4</td>
<td>0.0046</td>
</tr>
<tr>
<td>0.4</td>
<td>1.7745E-10</td>
<td>3.3721E-7</td>
<td>2.8462E-5</td>
<td>6.5934E-4</td>
<td>0.0075</td>
</tr>
<tr>
<td>0.6</td>
<td>1.7745E-10</td>
<td>3.3721E-7</td>
<td>2.8492E-5</td>
<td>6.5934E-4</td>
<td>0.0075</td>
</tr>
<tr>
<td>0.8</td>
<td>1.0967E-10</td>
<td>2.0841E-7</td>
<td>1.7609E-5</td>
<td>4.0750E-4</td>
<td>0.0046</td>
</tr>
<tr>
<td>M=20,p=3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>3.8205E-4</td>
<td>5.1061E-4</td>
<td>6.6805E-5</td>
<td>2.8638E-4</td>
<td>3.1596E-4</td>
</tr>
<tr>
<td>0.4</td>
<td>6.1818E-4</td>
<td>8.2618E-4</td>
<td>1.0809E-4</td>
<td>4.6338E-4</td>
<td>5.1124E-4</td>
</tr>
<tr>
<td>0.6</td>
<td>6.1817E-4</td>
<td>8.2618E-4</td>
<td>1.0809E-4</td>
<td>4.6338E-4</td>
<td>5.1124E-4</td>
</tr>
<tr>
<td>0.8</td>
<td>3.8205E-4</td>
<td>5.1061E-4</td>
<td>6.6805E-5</td>
<td>2.8638E-4</td>
<td>3.1596E-4</td>
</tr>
<tr>
<td>1</td>
<td>7.9600E-20</td>
<td>1.0639E-19</td>
<td>1.3919E-20</td>
<td>5.9686E-20</td>
<td>6.5830E-20</td>
</tr>
</tbody>
</table>

and so on. Therefore from the equations, we have

$$u(x,t) = [2 - p e^{-t} + \frac{1}{p^2} e^{pt} + (p + \frac{1}{p^2}) \sin(px)]$$

and so on. Therefore from the equations, we have

$$u(x,t) = [2 - e^{-t} + \frac{1}{p} e^{pt} + (p + \frac{1}{p}) \sin(px)]$$

and so on. Therefore from the equations, we have

$$u(x,t) = [2 - p e^{-t} + \frac{1}{p^2} e^{pt} + (p + \frac{1}{p^2}) \sin(px)] - (1 + p)[2T - p e^{-t} + \frac{1}{p^2} e^{pt} + (p + \frac{1}{p^2}) \sin(px)] +$$

$$+ (1 + p) [2 - p e^{-t} + \frac{1}{p^2} e^{pt} + (p + \frac{1}{p^2}) \sin(px)]$$

and so on. Therefore from the equations, we have

$$u(x,t) = [2 - e^{-t} + \frac{1}{p} e^{pt} + (p + \frac{1}{p}) \sin(px)]$$

The absolute error for various values of x, t and M (number of terms) are also tabulated in Table 2.

CONCLUSION

In the present study the homotopy perturbation method was applied on some periodic equations. The solution has been compared with the exact solution. The results show that while the traditional perturbation method depends on small parameter assumption and the
obtained results, in most cases, end up with a non
physical result, the numerical method leads to inaccurate
results when the equation is intensively dependent on
time, while He's homotopy perturbation method (HPM)
overcomes completely the above shortcomings, revealing
that the HPM is very convenient and effective.

REFERENCES

1. He, J.H., 1999. Homotopy perturbation technique,
 Computer Methods in Applied Mechanics and
 Engineering, 178: 257-262
 new nonlinear analytical technique. Applied
 solving boundary value problems, Physics Letters
 for nonlinear oscillators with discontinuities, Applied
 technique and a perturbation technique for non-
 linear problems, International J. Non-Linear
 method to nonlinear wave equations, Chaos, Solitons
 and Fractals, 26(3): 695-700.
 depending on an artificial parameter: A special
 example, Communications in Nonlinear Science and
 Blasius equation, Applied Mathematics and
 with discontinuity by parameter-expansion method,
 Chaos, Solitons and Fractals, 35(4): 688-691.
 perturbation method to nonlinear equations arising in
 Decomposition Method for Approximating the
 Solution of the Parabolic Equations, Applied
 of galerkin collocation and the method of lines for