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Abstract: Tanh-Coth Method is applied to find travelling wave solutions of nonlinear differential equations. The proposed scheme is fully compatible with the complexity of the problems and is highly efficient. Moreover, suggested combination is capable to handle nonlinear problems of versatile physical nature. 
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INTRODUCTION


Most of the physical phenomenon is modeled by nonlinear differential equations [1-65] and a wide range of analytical and numerical techniques including Perturbation, Modified Adomian’s Decomposition (MADM), Variational Iteration (VIM), Homotopy Perturbation (HPM), exp-function, Spline, Backlund transformation, Homotopy Analysis (HAM), have been developed to solve such equations [1-64] and the references therein. The basic motivation of this paper is the extension of a relatively new scheme which is called the Tanh-Coth Method [39] to obtain solitary wave solutions of (3+1)-dimensional potential YTSF equation, (1+1)-dimensional nonlinear dispersive equation, (1+1)-dimensional Benjamin-Bona Mahony equation, (1+1)-dimensional nonlinear Ostrovsky equation, Zoomeron equation, Generalized ZK-BBM, Boussinesq equations, Gilson-Pickering equation, Combined Sinh-Cosh-Gordon equation and Double Combined Sinh-Cosh-Gordon Equation which are of extreme importance in mathematical physics. It is observed that the proposed scheme is fully compatible with the complexity of such problems. Moreover, suggested combination is highly capable to handle nonlinear problems of versatile physical nature. Numerical results are very encouraging and reveal the efficiency of proposed scheme. 

DESCRIPTION OF THE TANH-COTH METHOD

We suppose that the given nonlinear partial differential equation for u(x, t) to be in the form
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where P is a polynomial in its arguments. The essence of the tanh-coth method expansion method can be presented in the following steps: 

Step 1: Seek traveling wave solutions of Eq. (1) by taking u(x,t) = u((), ( = x-ct and transform Eq. (1) to the ordinary differential equation

                                                                            [image: image4.png]Qu,u',u",





(2)

where prime denotes the derivative with respect to (.

Step 2: If possible, integrate Eq. (2) term by term one or more times. This yields constant(s) of integration. For simplicity, the integral constant(s) may be zero.

Step 3: Introduce a new independent variable
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that leads to the change of derivatives:
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(4) 

Other derivatives can be derived in a similar manner.

Step 4: We then propose the following finite series expansion
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in which in most cases m is a positive integer. To determine the parameter m, we usually balance the linear terms of highest order in the equation (2) with the highest order nonlinear terms. Substituting (3), (4) and (5) into the ODE yields an equation in powers of Y.

Step 5: With m determined, we collect all coefficients of powers of Y in the resulting equation where these coefficients have to vanish. This will give a system of algebraic equations involving the parameters ak, bk, µ, c. Having determined these parameters and using (5) we obtain an analytic solution u = u(x,t), in a closed form.

SOLUTION PROCEDURE


To illustrate the effectiveness and the advantages of the proposed method, Here, we consider two models of nonlinear evolution equations of special interest physically, namely, The (3+1)-dimensional potential YTSF equation.

Example 3.1: Consider the (3+1)-dimensional potential YTSF equation
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(6)

Following the above procedure we transform Eq. (6) into
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(7)

obtained upon using ( = x+y+z-ct and integrating once. Balancing the nonlinear term (u()2 with the highest order derivative u(( that gives

                                                                                (m+1)2 = m+3
(8)

so that

                                                                                     m = 1,-2
(9)

Case (i):

For m = 1, The tanh-coth method admits the use of the substitution
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Substituting (10) into (7), collecting the coefficients of each power of Yi, 0(i(4, setting each coefficient to zero and solving the resulting system of algebraic equations, we find the following sets of solutions:
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(12)
This in turn gives the front wave (kink) solution
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And the travelling wave solutions
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Fig. 3.1: Kink solution of Eq. (13) when a0 = 1, c =-1.5

[image: image30.emf]
Fig. 3.2: Travelling wave solution of Eq. (14) when a0 = 1, c =-1.5
Case (ii): 

For m =-2, The tanh-coth method admits the use of the substitution
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Substituting (16) into (7) and proceeding as before we found that a2 = b2 = 0. Therefore the substitution (16) is reduced to
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Collecting the coefficients of each power of Yi, 0(i(8, setting each coefficient to zero and solving the resulting system of algebraic equations, we find the following sets of solutions:
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(21) 

This in turn gives the following solution c>0 
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Fig. 3.3: Traveling wave solution of Eq. (22) when c =-2
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Fig. 3.4: Traveling wave solution of Eq. (23) when c =-2 

                                            [image: image54.png]+ b tanh [}m (x— ct)],




(24)

                                             [image: image56.png]ug(x,t) =

+aycoth[2V=Ee=3 (v e0)]

ey




(25)
Example 3.2: Consider the following (1+1)-dimensional nonlinear dispersive equation:
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where ( is nonzero positive constant. This equation is called the modified KdV equation, which arises in the process of understanding the role of nonlinear dispersive and in the formation of structures like liquid drops and it is exhibits compaction: solitons with compact support. Following the above procedure we transform Eq. (6a) into ODE
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(7a)

obtained upon using ( = x-ct and integrating once. Balancing the nonlinear term u3 with the highest order derivative u( that gives

                                                                                      3m = m+2
(8a)

so that

                                                                                          m = 1
(9a)

The tanh-coth method admits the use of the substitution
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Substituting (10a) into (7a), collecting the coefficients of each power of Y, setting each coefficient to zero and solving the resulting system of algebraic equations, we find the following sets of solutions:
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(13a)
This in turn gives the front wave (kink) solution
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Fig. 3.5: Kink solution of Eq. (14a) when ( = 0.5, c =-1.5
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Fig. 3.6: Travelling wave solution of Eq. (15a) when ( = 0.5, c =-1.5
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Fig. 3.7: Travelling wave solution of Eq. (16a) when ( = 0.5, c = 0.5

and the travelling wave solutions
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For c>0, we obtain the solution
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Example 3.3: Consider the following (1+1)-dimensional Benjamin-Bona Mahony equation
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(6b)

where ( is nonzero positive constant. This equation was first derived to describe an approximation for surface long waves in nonlinear media. It can also be characterize the hydromagnetic waves in cold plasma, a caustic waves in inharmonic crystals and acostic-gravity waves in compressible fluids. Following the above procedure we transform Eq. (6b) into ODE
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(7b)

obtained upon using ( = x-ct and integrating once. Balancing the nonlinear term u3 with the highest order derivative u( that gives

                                                                                    3m = m+2
(8b)

so that

                                                                                         m = 1
(9b) 
The tanh-coth method admits the use of the substitution
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(10b)


Substituting (10b) into (7b), collecting the coefficients of each power of Y, setting each coefficient to zero and solving the resulting system of algebraic equations, we find the following sets of solutions:
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This in turn gives the front wave (kink) solution
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And the travelling wave solutions
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Fig. 3.8: Kink solution of Eq. (12b) when ( = 0.5, c =-1.5
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Fig. 3.9: Travelling wave solution of Eq. (13b) when ( = 0.5, c =-0.5 

Example 3.4: Consider the (1+1)-dimensional nonlinear Ostrovsky equation
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This equation is a model for weakly nonlinear surface and internal waves in a rotation ocean. Following the above procedure we transform Eq. (6c) into ODE:
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(7c)

obtained upon using ( = x-ct. Integrating Eq.(7c) with respect to ( one has 
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Balancing the nonlinear term u3 with the highest order derivative uu( that gives

                                                                                 3m = m+m+2
(9c)

so that

                                                                                       m = 2
(10c) 
The tanh-coth method admits the use of the substitution
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Substituting (11c) into (8c), collecting the coefficients of each power of Y, setting each coefficient to zero and solving the resulting system of algebraic equations, we find the following solution set
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This in turn gives the solution
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Fig. 3.10: Solitary wave solution of Eq. (13c) when µ = 0.5, c = 1.5
Example 3.5: Now we will consider Zoomeron equation
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(6d)

We would like to use our method to obtain more general exact solutions of Eq. (6d) by assuming the solution in the following frame:
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where c,( are constants. We substitute Eq. (7d) into Eq. (6d) and integrating twice with respect to (, by setting the second integration constant equal to zero, we obtain the following nonlinear ordinary differential equation
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where R is integration constant. Balancing the nonlinear term U3 with the highest order derivative U( that gives

                                                                                     3m = m+2
(9d)

so that

                                                                                         m = 1
(10d)

The tanh-coth method admits the use of the substitution

                                                                [image: image114.png]u(x,t) =S(¥Y) = ay +a,Y+b,¥Y™*
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Substituting (11d) into (8), collecting the coefficients of each power of Y, setting each coefficient to zero and solving the resulting system of algebraic equations, we find the following sets of solutions:
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This in turn gives the front wave (kink) solution
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And the travelling wave solutions
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For c>0, we obtain the solution
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Fig. 3.11: Kink solution of Eq. (15d) when R = 0.5, c =-1.5, ( = 1
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Fig. 3.12: Travelling wave solution of Eq. (16d) when R = 0.5, c =-1.5, ( = 1

[image: image130.emf]
Fig. 3.13: Travelling wave solution of Eq. (17d) when R = 0.5, c =-1.5, ( = 1

Example 3.6: Consider the following Generalized ZK-BBM Equation
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Following the above procedure we transform Eq. (6) into ODE
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obtained upon using ( = x+y-ct and integrating once. Balancing the nonlinear term u3 with the highest order derivative u( that gives

                                                                                      3m = m+2
(8e)

so that

                                                                                          m = 1
(9e)

The tanh-coth method admits the use of the substitution
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Substituting (10e) into (7e), collecting the coefficients of each power of Y, setting each coefficient to zero and solving the resulting system of algebraic equations, we find the following sets of solutions:
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This in turn gives the front wave (kink) solution
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And the travelling wave solutions
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Fig. 3.14: Kink solution of Eq. (13e) when a = 3.5, c = 1.5, b = 5.5
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Fig. 3.15: Travelling wave solution of Eq. (14e) when a = 5.5, c = 2.5, b = 2.5

Example 3.7: Consider the following Boussinesq equation
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where ( and ( are positive constants. Eq. (6f) was introduced by Boussinesq in 1871 to describe the propagation of long waves in shallow water. The Boussinesq equation also arises in many other physical applications including nonlinear lattice waves, vibrations on a nonlinear string and ion sound waves in plasma. Following the above procedure we transform Eq. (6f) into ODE
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obtained upon using ( = x-ct and integrating twice. Balancing the nonlinear term u2 with the highest order derivative u( that gives

                                                                                    2m = m+2
(8f)

so that

                                                                                        m = 2
(9f) 
The tanh-coth method admits the use of the substitution
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(10f)


Substituting (10f) into (7f), collecting the coefficients of each power of Y, setting each coefficient to zero and solving the resulting system of algebraic equations, we find the following sets of solutions:
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 (14f)
In view of these results we obtain the following sets of solutions

                                                       [image: image162.png]u(m) =< (1 3tanh[f Cye m]z)




(15f)

                                                       [image: image164.png]2 2
uy(xt) = %(17350&1 B = (x*ct)] )




(16f) 

                                                    [image: image166.png]



(17f) 

                                                    [image: image168.png]
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Fig. 3.16: Solitary wave solutionof Eq. (15f) when ( = 1.75, c = 1.5, ( = 0.5
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Fig. 3.17: Travelling wave solution of Eq. (16f) when ( = 3.75, c = 5.5, ( = 2.5
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Fig. 3.18: Graph of Eq. (17f) when ( = 2.75, c =-1.5, ( = 3.5

[image: image172.emf]
Fig. 3.19: Graph of Eq. (18f) when  ( = 0.75, c = 0.5, ( =-0.5
Example 3.8: Consider the following Gilson-Pickering equation,
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(6g)
where (,k,(,( are arbitrary constants. The equation was introduced by Gilson and Pickering (GP) in 1995 and was called the Gilson-Pickering equation,The solutions for ( = 1, were studied. Our results are corresponding to ( = -2. Three special cases of Eq. (6g) have appeared in the literature. Up to some rescalings, these are:the Fornberg-Whitham (FW) equation, the Rosenau-Hyma (RH) equation, the Fuchssteiner-Fokas-Camassa-Holm (CH) equation.


We would like to use our method to obtain more general exact solutions of Eq. (6g) by assuming the solution in the following frame:

                                                                                u = U((), ( = x-ct
(7g)

where c is a constants. We substitute Eq. (7g) into Eq. (6g) and integrating twice with respect to (, by setting the second integration constant equal to zero, we obtain the following nonlinear ordinary differential equation
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Balancing the nonlinear term u2 with the highest order derivative u( that gives

                                                                                   2m = m+2
(9g)

so that

                                                                                       m = 2
(10g)

The tanh-coth method admits the use of the substitution
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Substituting (11g) into (8g), collecting the coefficients of each power of Y, setting each coefficient to zero and solving the resulting system of algebraic equations, we find the following sets of solutions:
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(15g)
In view of these results we obtain the following sets of solutions
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[image: image204.emf]
Fig. 3.20: Solitary wave of Eq. (16g) when ( = 1.75, c =-0.5, ( = 1.5, k = 1.5 

[image: image205.emf]
Fig. 3.21: Travelling wave of Eq. (17g) when ( = 0.75, c =-1.5, ( = 0.5, k = 0.5
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Fig. 3.22: Solitary wave of Eq. (18g) when ( = 2.5, c = 5.5, ( = 2.5, k = 10

[image: image207.emf]
Fig. 3.23: Travelling wave of Eq. (19g) when ( = 2, c = 1.5, ( = 3.75, k = 1.5

Example 3.9: Consider the following Combined Sinh-Cosh-Gordon Equation, We first solve the combined sinh-cosh-Gordon equation
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(6h)

where ( and ( are nonzero real constants. Making the transformation u(x,t) = u((), ( = x-ct and integrating once with respect to (, Eq. (6h) we get 
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(7h)

By applying the Painlev´e transformation,

                                                                                         v = eu
(8h)

or equivalently

                                                                                        u = In v
(9h)
we have
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Then
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(11h)

Consequently, we can write the combined sinh-cosh-Gordon equation (7h) to the ODE
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Balancing the nonlinear term v3 with the highest order derivative vv( that gives

                                                                                       m = 2
(13h) 

The tanh-coth method admits the use of the substitution
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Substituting (14h) into (12h), collecting the coefficients of each power of Y, setting each coefficient to zero and solving the resulting system of algebraic equations, we find the following sets of solutions:
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This in turn gives 
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 (17h) 

and 
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(18h) 

Recall that
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from (11h), we therefore obtain the solutions
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(21h)
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Fig. 3.24: Kink solution of Eq. (17h) when ( = 4.5, c = 2.5, ( = 2.5, k = 2.5

[image: image243.emf]
Fig. 3.25: Travelling wave solution of Eq. (18h) when ( =-9.5, c = 2.5, ( =-7.5, k = 3.75

Example 3.10: Consider the following double combined sinh-cosh-Gordon equation
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(6i)

where ( and ( are nonzero real constants. Making the transformation u(x,t) = u((), ( = x-ct and integrating once with respect to (, we get 
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(7i)

Using the transformation,

                                                                                           v = eu
(8i)

or equivalently

                                                                                          u = ln v
(9i)

we have
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(10i) 
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 (11i)

Then

                                                                                 [image: image253.png]aid
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(12i)
Consequently, we can write the double combined sinh-cosh-Gordon equation (7i) to the ODE

                                                 [image: image255.png]2Bv* + 2av® + 2(c* — K)vv" —2(c* —k)(v')





(13i) 

Balancing the nonlinear term v4 with the highest order derivative vv( that gives

                                                                                         m = 1
(14i) 

The tanh-coth method admits the use of the substitution

                                                               [image: image257.png]u(x,t) =S(¥Y) = ay +a,Y+b,¥Y™*




(15i)


Substituting (15i) into (13i), collecting the coefficients of each power of Y, setting each coefficient to zero and solving the resulting system of algebraic equations, we find the following sets of solutions:
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(16i)
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(17i)

This in turn gives 
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(18i) 

and 
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(19i)

[image: image266.emf]
Fig. 3.26: Kink solution of Eq. (18i) when ( = 1.5, c = 0.5, ( = 2.5, k = 0.75

[image: image267.emf]
Fig. 3.27: Travelling wave solution of Eq. (19i) when ( = 1.5, c = 1.5, ( = 3.5, k = 2.5

Recall that

                                                                             [image: image269.png]aid
arccosh [





(20i)

from (20i), we therefore obtain the solutions

                  [image: image271.png]u, (x,8) = arccosh{ (——(1 + tanh[p (-x +ct)]) ——(1 +cothfu (—x+ ct)]))}




(21i)
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(22i)

Where 

[image: image275.png]



CONCLUSION


The tanh-coth method was successfully used to establish solitary wave solutions. The performance of the tanh-coth method is reliable and effective and gives more solutions. The applied method will be used in further works to establish more entirely new solutions for other kinds of nonlinear wave equations. As we know, various other types of exact solutions for the nonlinear evolution equations, such as rational solutions, polynomial solutions and the traveling wave solutions have been obtained by many authors under different approaches. However, our solutions are soliton and periodic solutions. Soliton and periodic solutions have many potential applications in physics. The availability of computer systems like Mathematica or Maple facilitates the tedious algebraic calculations. The method which we have proposed in this letter is also a standard, direct and computerizable method, which allows us to solve complicated and tedious algebraic calculation.
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