
Research Journal of Earth Sciences 3 (2): 63-70, 2011
ISSN 1995-9044
© IDOSI Publications, 2011

Corresponding Author: S. Gaci, Département Géophysique- FSTAT- Université Des Sciences De La Terre De Houari
Boumédienne (USTHB)-Algiers, Algeria. 

63

A New Approach for the Investigation of the Multifractality of Borehole Wire-Line Logs 
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Abstract: In previous researches, borehole wire-line logs were described as fractional Brownian motions
characterized by Hurst (or Hölder) exponents which measure their global regularity degrees. Since theses
monofractals are everywhere singular with the same Hurst exponent, they do not reflect the depth-evolution
of the local regularity of the logs. For this purpose, we suggest a general framework, multifractional Brownian
motion, to describe well logs and propose an algorithm based on the Generalized Quadratic Variations to
estimate the local Hurst exponent function. Firstly, synthetic log data simulated by the Successive Random
Additions  method  are  used  to  assess  the  potential  of  this  algorithm; it is observed that the estimated
Hurst  functions  (or  regularity profiles) are very close to the theoretical Hurst functions. Secondly, this
analysis is extended to sonic logs data recorded in the KTB pilot borehole. The obtained regularity profiles
allow to perform a lithological segmentation and to identify fault contacts on the geological layers crossed by
the well. A strong correlation between the Hurst value variation and the lithological change is also noted.
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INTRODUCTION by this relation: D = 2 – H. The estimation of the H

Borehole measurements are an essential complement [6-11, 2, 3].
to exploration activities (seismic, drilling…etc) because Indeed, the H coefficient measures the global
they  provide additional information from the borehole regularity degree of the process and does not suit to
that cannot be derived from other sub-surface study well- logs whose the local regularity varies rapidly
investigations. The analysis of these recorded data may in  depth. This calls for the use of a multifractal
bring supplementary information about the earth’s description which consists in defining a procedure to
heterogeneities. estimate  the  global  repartition  of   the   various  Hurst

Numerous studies have shown that borehole wire- (or Hölder) exponents, but not their location.
line logs may be described by non-stationary fractional Recently, developed stochastic models and
Brownian motions (fBms). These monofractal processes associated regularity estimation methods allow to
are  characterized  by a fractal k -power spectrum investigate the depth-evolution of the local regularity–2H–1

model  where  k  is  the  wavenumber and H is the Hurst even on extremely erratic data. Specifically, in the present
(or Hölder) exponent [1-5]. paper, we will consider the multifractional Brownian

The   Hurst  parameter  H gives an indication about motion (mBm) as a model for borehole logs and use an
the  self-similarity  degree  and  long-range  dependence estimation algorithm based on the Generalized Quadratic
of the well log. When H = 1/2, the process is reduced to Variations (GQV). 
the  ordinary  Brownian   motion   (namely   the  process The present paper is organized as fellows. First of all,
has no memory); for H >1/2, it is characterized by a we present shortly the description of the multifractional
persistence   (positive   or   negative)-   namely  the Brownian motion (mBm) model and the Generalized
process  shows  a  clear  trend;  and  finally,   for  H <1/2, Quadratic Variations algorithm. Then, we show the results
it   exhibits     an      anti-persistent     behaviour.    From obtained by this technique on synthetic data simulated by
a geometrical point of view, H determines the  (constant) Successive Random Additions (SRA) algorithm. Finally,
regularity   degree   of   the   sample   paths   of   the  fBm the GQV algorithm is implemented on P and S-wave sonic
and  is  linked  to  the  fractal  Dimension  D  of  the graph measurements recorded in the KTB pilot borehole.

parameter  can  be  carried  out  using  several  methods
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THEORY the recalling of the main features of its famous special

Multifractional Brownian Motion: One of the models Defined by Mandelbrot and Van Ness [12], the fBm
which can be used to describe the behaviour of the is characterized by a slowly decaying autocorrelation
borehole wire-line logs is the multifractional Browniam function depending on the parameter 0 < H < 1, named
motion (mBm), which generalizes the fractional Brownian Hurst (or Hölder) exponent and admits the following
motion (fBm). Then the introduction of the mBm requires moving average representation:

case (fBm).

(1)

Where dB stands for the ordinary Brownian motion process motion and G represents a strictly-positive scaling
parameter: G =C ('(2H + 1) sin (B H))  & '(H + 1/2) with C is a positive constant. If G = 1, the motion is said standard.1&2

The process B (t) is self-similar of parameter H and has stationary increments. Its covariance function is expressed:H

(2)

The fBm can be generalized by replacing the constant Hurst parameter H by a function H(t). This extension leads
to define the mBm which has the following representation [13-15].

(3)

Where H: [0,4[6]0,1] is required to be a Hölder function of order 0 < 0 # 1 to ensure the continuity of the motion.
In the case of the Hurst function H(t) is constant, W (t) is reduced to a simple fBm.H(t)

The mBm’s increments are in general neither independent nor stationary. It can be shown that they display long
range dependence for all admissible non-constant regularity functions H(t) [16].

Contrarily to fBm, the pointwise Hölder exponent of W (t), "  = {" (t),t ,R}, may depend on the location. It equalsH(t)  W  W

with probability one to H(t) for each t [17, 18, 19, 15].

"  (t) = H(t) (4)W

Thus, mBm allows to describe and to model phenomena whose regularity varies in time/space. Recall that the
pointwise Hölder exponent of a stochastic process X at t  is defined by:0

(5)

Another important property of mBm is that it does not remain self-similar but is Locally Asymptotically Self-Similar
(in short LASS). That means that for each t, there is an fBm of Hurst parameter H(t), which is tangent to mBm [19-21].

Local Regularity Estimation: Ayache and Lévy-Véhel [22] suggested a parametrical method to identify the Hölder
exponent of mBm processes. This method is based on the computation of the so-called “Generalized Quadratic
Variations” (GQV).

For a trajectory of the process , discretized at times , p , 0,..., N – 1 with N $ 1, the GQV are defined by:

(6)

Where  can be considered as ‘’the neighborhood’’ of t.
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The authors demonstrated that under some
conditions imposed on the constants, ( and *, the
following relation is satisfied with probability one for any
mBm W (t).H(t)

(7)

Consequently, an estimation algorithm of the local
Hölder exponent of an mBm W (t), called here GQVH(t)

algorithm, is resulted:

(8)

APPLICATION TO SIMULATED LOG DATA 

In this section, the GQV algorithm is tested on
synthetic log data which are generated by the means of
the Successive Random Additions (SRA) method [23].

In order to assess the convergence of the estimator,
we generated 1000 realizations of an mBm path
corresponding to a four-layers geological model whose
the parameters are given by the Table 1. Then, using the
Hurst values estimated at four fixed positions so that each
layer is represented by a position, we plotted histograms
representing the Hurst values obtained by the GQV
algorithm versus the realizations number for each position
(Fig. 1).

Table 1: Synthetic a four-layers geological model parameters

Layers L1 L2 L3 L4

Samples number 512 512 512 512

Ranges of Layers’ indexes 1-512 513-1024 1025-1536 1537-2048

Theoretical H-value 0.2 0.4 0.6 0.8

We remark that for each position, the estimated Hurst
values follow a gaussian distribution centred at a Hurst
value very close to the theoretical Hurst value of the
considered layer. Moreover, the bias value varies slightly
with the considered position but remains small.

In addition, we simulated paths of mBms using four
types of Hurst functions: linear H , periodic H , logistic H1   2   3

and synthetic H  (Fig. 2) defined:4

C H (t) = 0.2 + 0.6t;t

C H (t) = 0.5 + 0.3 sin(4B t);2

C ;

C .

Then, we estimated the Hurst functions of the
generated mBms owing to the GQV algorithm. Finally, for
each mBm, we calculated the error function which
represents the difference between the estimated Hurst
function and the theoretical Hurst function.

Fig. 1: Histograms of the Hurst values obtained by the GQV algorithm versus the realizations number. The four
histograms are resulted from 1000 realizations of a simulated mBm s(z) corresponding to a 4-layers geological
model  at  four  positions located in (a) 1  layer; (b) 2  layer; (c) 3  layer and (d) 4  layer whose the theoreticalst   nd   rd    th

H-values are respectively 0.2, 0.4, 0.6 and 0.8. 
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(a)

(b)

(c)

(d)

Fig. 2: The application of the GQV algorithm to a simulated path of an mBm with different types of Hurst function H(t):
(a) linear (b) periodic (c) logistic (d) synthetic 
In the left, the simulated path of the mBm, in the middle, the Hurst  function  estimated  by  the  GQV  algorithm
(in blue line) and the theoretical Hurst function (in green line) and in the right, the error function which is the
difference between the estimated Hurst function and the theoretical Hurst function.

The results showed that for the different types of the Both velocity logs display an increasing trend of the
Hurst functions, the estimated Hurst function, velocity with depth due to the increasing consolidation of
represented in blue line, is very close to the theoretical the crystalline rocks. This tendency can be observed on
Hurst function, plotted in green line and the error the blue lines fitting the velocity logs.
functions’ values are almost ranged between -0.1 and 0. The trend removal is an important step in the
We confirm again that the GQV algorithm constitutes an processing of random velocity data [24-26]. In the case of
accurate estimator of the Hurst exponent of mBm the trends are not eliminated from data, large distortions
processes. can occur in the processing of correlation and spectral

APPLICATION TO KTB SONIC LOG DATA The suppression of trends changes also the raw well

Here, the application of the GQV algorithm is focused stationary, to be approximately Gaussian and stationary.
on sonic logs data measured at the pilot borehole However, by normalization, the obtained series have zero
(`Vorbohrung', VB) drilled for the German Continental mean and unit variance. These intermediate operations are
Deep Drilling Program (KTB). likely to yield more accurate Hurst estimations. In the

This borehole is located in the south-eastern other hand, we have to precise that the GQV algorithm is
Germany  and  reaches  depths  of  about  4000m  in very efficient in the case of a normalized (or standard)
crystalline   basement   rocks.   The   main  lithological mBm.
units characterizing the KTB site are: paragneisses, In our work, linear trends are fitted using least
metabasites   and  alternations  of   gneiss  and squares procedures and are removed from the velocity
amphibolite,  The  logs  considered  in this study are the logs. Then, for each log, we examine the corresponding
P-wave velocity (Vp) sonic log and the S-wave velocity stochastic component s(z) which is given by [26, 27]:
(Vs)  sonic  log  data  recorded  in  the  depth  interval
(28.194 - 3990.137 m) with a sampling interval of 0.1524 m
(6 inches).

quantities.

data,  which  are  generally  non-Gaussian and non-
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Fig. 3: Results obtained by the application of the GQV algorithm to sonic measurements at the pilot (VB) borehole (a1)
& P-wave velocity (Vp(z)) - (a2) S-wave velocity (Vs(z)) (b1) Vp(z)’s stochastic component (Sp(z)) - (b2) Vs(z)’s
stochastic component (Ss(z)) (c1) Vp(z)’s Hurst function (Hp(z)) - (c2) Vs(z)’s Hurst function (Hs(z)) (e) lithologic
sketch modified from http://icdp.gfz-potsdam.de/html/ktb Blue line: contacts with faults; grey line: lithological
changes

Where z is the depth, V and V are coefficients Sp and Ss (Figs. 3.b1 & 3.b2) and finally their  estimated0  1 

determined by linear regression (least-squares fitting Hurst  functions  Hp(z)  and Hs(z) (Figs. 3.c1 & 3.c2).
procedures) which are presented in Table 2.

In  Figure  2, we present the velocity logs, Vp(z) and
Vs(z), shown in red line, with their respective
corresponding  linear  trends,  shown  in  blue line (Figs.
3.a1 & 3.a2), their corresponding stochastic components

Table 2: Least-squares fitting coefficients (V and V ) related to sonic logs0  1

(VB, pilot borehole)
Type V  (m/s) V  (1/s)0 1

VB-Vp 5527 0.1222
VB-Vs 3182 0.1073
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(a1) (b1) (c1)

(a2) (b2) (c2)

Fig. 4: Histograms of the Hurst values obtained by the GQV algorithm from P and S-wave sonic logs (a1) Hp(z)-AU (b1)
Hp(z)-VU (c1) Hp(z)-GU (a2) Hs(z)-AU (b2) Hs(z)-VU (c2) Hs(z)-GU 

We  observe that the estimated regularity profiles of For both estimated Hurst functions related to the
both sonic logs exhibit a similar form. In addition, the velocity logs, we established histograms for each
estimated Hurst values are mostly less than 0.5, which identified unit (Fig. 4). We remark that the histograms
leads us to conclude that the investigated sonic logs corresponding to all the lithological units (AU, VU and
show anti-persistence property. The velocity variations GU) for both sonic logs fellow a normal distribution.
are then unpredictable. Moreover, we observe that the means of the Hurst values

In  order  to  establish  a  lithological  segmentation obtained from Vs Velocity log are larger than those
on  the  estimated  regularity  profiles, we used a resulted from Vp velocity log, in the case of AU
geological section crossing the KTB borehole (Fig. 3.e1). (mean=0.3896 for Hp, mean=0.4117 for Hs) and GU
The   analysis   of   the   Hurst   value   variation  allowed (mean=0.3925 for Hp, mean=0.3958 for Hs). This statement
us  to  identify   the   following   lithological  units,  whose is  reversed  for  the VU unit (mean=0.3970 for Hp,
bounds   are   shown  in  grey  line,  are: AU1-AU2-AU3 mean=0.3821 for Hs). In overall, the Hurst values  mean for
(for  Amphibolite  Units),  VU1-VU2   (for  Variegated the geological units obtained from both velocity logs are
Units)   and   GU1-GU2-GU3   (for   Gneiss  Units). close. It is then difficult to characterize  a  lithological unit
Moreover,  we  confirm  the  presence  of  the  five faults: by a specific mean Hurst value, but the GQV algorithm still
F1, F2, F3, F4 & F5, presented in blue line. Indeed, the an appropriate tool to delimit the layers basing on the
transition  between  two  adjacent lithological units and variation of the Hurst function.
the faults’ presence are marked by abrupt jumps of the However, we pointed out that all the standard-
Hurst value. deviation values corresponding to Vp log are slightly

We observe that in contrast to the Gneiss and larger than those associated to Vs log for each geological
Variegated units, the amphibolites units are well unit, but they are generally comparable and small.
recognized on the regularity profiles. This may be due to
the fact that the P and S-waves velocities in amphibolites CONCLUSION
are higher than in the other units. On the other hand, the
gneiss and variegated units present close  velocities,  so This study showed that borehole wire-line logs can
it is difficult to distinguish one from other. Concerning the be assumed as multifractional Brownian motion (mBm)
faults, we precise that the faults  F2 and F3 are not clearly processes  which  offer the possibility to investigate the
recognized because they are positioned inside the gneiss local multifractality behavior by the means of the depth-
unit GU2. dependent Hurst exponent.
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On synthetic logs simulated by Successive Random 9. Leonardi, S. and H.J. Kümpel, 1998. Variability of
Additions (SRA) method, we showed that the Generalized
Quadratic Variations (GQV) algorithm allowed to accurate
Hurst function (or regularity profile) estimations, which
are very close to their corresponding theoretical Hurst
functions.

Moreover, we demonstrated the potential of the GQV
algorithm on P and S-wave velocity sonic logs data
recorded at the KTB pilot borehole. The variation of the
local Hurst value estimated by this algorithm allowed to
position faults and to recognize the geological layers
crossed by the borehole.

We conclude that the GQV algorihm may constitute
a suitable tool for a lithological segmentation, thus to
characterize sub-surface heterogeneities using the
estimated regularity profile.
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