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Abstract: Regression model is one of the most important and widely-used models in statistics which has proved
its significance and application in every field of science. In this paper, we have used linear regression model
and examined the relationship between continuous dependent (e.g., BMI) and independent (e.g., age) variables
which may be separated into logical categories (e.g., age categories. Apart from this, we have used spline
regression model which has provided a better fit, taking into consideration the variation in the relationship
between the predictor variable and the response variable. Spline is very constructive function-type used in
regression  when  the  relationship  between  a  response  and  a  set  of  covariates is not known in advance.
The analyses presented in this paper focuses on univariate regression splines. These functions provided a
helpful and flexible basis for modeling relationships with continuous predictors. Comparisons of both
techniques will be done by using real life data that will be collected from different fields.
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INTRODUCTION polynomial regression) as an alternative to categorical

Regression is an extensively explored branch in of splines is introduced by Pierre Bezier which is used for
statistics and scientific areas. A meaningful relationship interpolating purposes in which a draftsman would draw
exists between response and predictor variable in the a smooth curvature through a set of points on graph
study of regression. It is generally used in intuitive level paper by imposing strip to pass over the points and
every day as well as for prediction and forecasting. Such discovered piecewise polynomials or splines could be
as in medical a new medicine (dependent variable) was used in place of polynomials occurred in the early
predicted on the base of body weight (independent twentieth century.
variable), as for as in businesses it uses for prediction There are many types of splines and estimation
current exchange rates, future sales etc. Through the least procedures [2, 3]. The analyses presented in this paper
square technique an appropriate model selecting and focus on univariate splines in ordinary least squares
appropriate fitting is possible in which we forecast the regression. Knot selection (number and location of knots)
one variable values on the basis of other. In this can be accomplished by various methods. One can use
technique the model is best if the error sum of squares is predetermined knots, natural division points, or visually
least possible. inspect the data. There are also other (more complex)

Numerous techniques are carrying out for regression methods, such as nonlinear least squares methods, for
analysis. Familiar used approaches are linear classical knot selection [3]. Predetermined knots are used in this
regression in parameters it is linear. It have unknown paper.
parameters in a finite number which are predictable from The techniques of spline linear regression and linear
the data figures. Transformations of the response variable piecewise regression are commonly used. Any degree of
can improve the fit and may correct violations of model polynomial could be in use, but the cubic is convenient
assumptions such as constant error variance. Greenland for most purposes, most progressive commonly use
(1995) [1] suggests using spline regression (and fractional natural cubic splines.

analysis for dose response and trend analysis. The term
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MATERIALS AND METHODS

The model of SLR is an analytical technique which will use to describe the relation among explained and explanatory
variable. The line of Simple linear regression is a straight line fitted to the data through the method of least squares [4].
We assume n sample data points and for this here we have two variables BMI and Age. The hypothesized relationship
between BMI (body mass index) and Age may be written as:

b =  + g + (2.1)0 1 j

In equ. (1) b and g symbolize as BMI and Age respectively,  represent a constant term,  is the coefficient of the0 1

variable Age and  is the noise term reflecting other causes that effect BMI. Since BMI is the ratio of Weight in kg andj

Height in meter square [5]. ( ). The fitted line (1), which we calculated using the sample data points,

is presented as:

The “hats” can be read as “estimator of” and the derivation of the j  value of b from its predicted value is:th

The unsystematic error  is there to present the change between the dependent variable predicted values
by the model,  and the true value of the dependent variable b .j

The model for linear spline regression is in part a special case of the piecewise regression model where we have only
one independent variable. The main difference in the linear spline model and the piecewise linear model is that, in the
former, the adjacent regression lines are required  to  intersect  at the knots or change points [6]. Let we have sample size
n at that point for the ith sample point we assume b  as the response variable and g  as explanatory variable. Then wej j

have a model b  = m  +  where,j j j

In equ. (2.1)  have mean zero as well as constant S.D. Here we have k straight line interconnecting segments.soj

the ith line (i = 1... k) is connected with n  sample points. These segments are defined through knotsj
*

.
In this study, our main concerned is with splines models which are linear, quadratic and cubic. These models have

been analyzed by using one of the spline techniques which is called natural spline. Natural splines confirm the typical
interpolating restrictions. A spline procedure specified degree, name of variable, list of abscissa and ordinate etc [7]. This
type of splines used a list of polynomial with valid interval of each polynomial. Natural splines are another type of flexible
polynomial-based function that starts with a cubic spline and then imposes the constraint that the function for the mean
is to be linear (rather than cubic) beyond some boundary points usual the min and max of independent variable [8].
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Let we have (m+1) points and g , g ,...,g  are the0 1 m

knots which are equally spaced, we use g and b variables
which are equal to Age and BMI respectively, we wish to
construct a piecewise cubic polynomials [9].

Then in general, a function s is called a spline of
degree k. Let us assume a cubic spline S(g) is a piecewise-
defined function:

Fig. 1.1: Histogram of BMI variable
(2.3)

Data Collection: The cross sectional data of 250 adult
(aged 15 years or above) people, both males and females
were taken from Rawalpindi district. The data on
dependent and explanatory variables were collected from
different  secondary  sources  to  originate  the models.
The sample was taken by convenient sampling, from Arid
Agriculture University, different clinics and different
hospitals, etc [10]. Data analysis have been done in the
software in SPSS and R.

RESULTS Fig. 1.2: Q-Q Plot for Normality of error term

In current section, we have presented the statistical which interprets that only 65% of the variation is
approach in which we apply the OLS regression with described by the independent variable. It tells that there
diagnostic tests for assumptions of linear models, then we is a strong relationship between numbers of age and BMI.
apply spline techniques [11]. In each point of linear model gives an estimate. The value

Linear models are based on some assumptions of  (=0.08452) which is a slope of linear model shows as
(normality,  linearity  and homoscedasticity etc.) and when age increases on the average as BMI increases about
these  assumptions  are  fulfilled then it became BLUE 0.08452. The value of  (=20.5958) is an intercept of our
(Best Linear Unbiased Estimator). Most common linear model show the average level of BMI. The p-value
assumptions for OLS regression analysis have been of the variable (is less than 0.001 alpha levels with
checked. For this purpose several tests have been positive coefficient of age which indicate age is positively
performed. The normality of our data is checked by using related  to  BMI and analysis of variance is also done
histograms  for  response  variable (BMI). As shown in Table 1.2 display the significant results at alpha level
Fig. 1.1, standardized residuals of dependent Variable 0.001.
(BMI) are normally distributed. Normal distributions of
error term can be conformed from the Q-Q Plot of Main Results by Spline Techniques: In this section
residuals, shown in the Figure 1.2. results based on spline regression model. First its general

Results of OLS Regression: The results of the OLS spline techniques with different degree and knots
regression have been summarized in Table 1.1 for the BMI selection and then comparison is made to check which
with  one  independent  variable.  Here R-square is 0.65610 model is best.

1

0

model is given then after numerical results. We have use
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Table 1.1: OLS Regression Summary
Coeff.Value t value Std. Error Pr(>|t|)

Intercept 20.59580 27.739 0.74249 < 2e-16 ***
Age 0.08452 4.173 0.02026 4.16e-05 ***
Residual std. errs. 4.301 on 248 DF
Multiple R-sq. 0.6561, Adjusted R-sq. 0.6184 
p-val. 4.163e-05, F-statistic: 17.41 on 1 and 248 DF 
Note: **=p<0.01, *=p<0.05, ***= p<0.001.

Table 1.2: ANOVA table of regression model
Df Sum Sq. Mean Sq. F value Pr(>F)

Regression 1 322.1 322.15 17.413 4.163e-05 ***
Residuals 248 4588.0 18.50 --- ---
Total 249 4910.1 --- --- ---

Table 3.1: Natural splines results with degree 3 and knots (8 inner and 2
boundary knots)
Estimate Std. Error t value Pr(>|t|)
40.871 8.272 4.941 1.46e-06 ***0

-18.759 6.562 -2.859 0.00463 **1

-15.509 8.539 -1.816 0.07060.2

-17.221 8.345 -2.064 0.04013 *3

-16.094 8.567 -1.879 0.06151.4

-14.539 8.398 -1.731 0.08468.5

-13.700 8.699 -1.575 0.116616

-18.391 8.154 -2.256 0.02500 *7

-9.884 5.654 -1.748 0.08169.8

-40.675 18.635 -2.183 0.03002 *9

NA NA NA NA10

Note: ***= p<0.001, **=p<0.01, *=p<0.05, =’.’p<0.1
Residual std. errs. 4.086 on 240 df
Multiple R-sq. 0.1839, Adj. R-sq. 0.1533 
P-val. 1.362e-07, F-stats. 6.008 on 9 and 240 DF

The general form of the fitted spline model:

(3.1)

where b is the BMI and , ,.........,  are the coefficients,0 1 m

g , g ,........,g  are the so-called knots (A knot is the1 2 m

internal breakpoints that define the spline), g  is the age1

at which the first growth period starts; therefore, equals
zero. The actual model that was fitted to the data was as
follows:

(3.2)

Now the coefficients of the model (3.2) are estimated
by using natural splines technique in r package.

Fig. 3.1: Graph of Cubic Spline (with 10 inner and 2 outer
knots)

In  Table  3.1  we  have  results of natural cubic
splines with different knots between 15-60 with 5 point
difference,  we  have  10  inner  knots  and  two  outer
knots  g<15,  15  = g<20, 20 = g<25, 25 = g<30, 30 = g<35,
40 = g<45, 50 = g<55, at the first knot results are highly
significant at alpha level p=0.001 but at the last knot it
does not define because of singularities. The degree of
freedom and degree is equal to three and Figure 3.1 shows
the visual display of spline at different knots. The Fig. 3.1
displays the overall graphical illustration of the spline
regression model. It can be seen from the above figure the
model fits the data very well and the line nicely
approximate the data. By applying natural spline
technique, we have estimated the unknown parameters in
eq (3.2) which are summarized in the following table.

CONCLUSION

This research was mainly concerned with the
estimation of parameters by linear regression and natural
spline technique. Comparisons of both techniques are
also obtained firstly we have applied linear regression and
obtained the unknown parameters. The constant behavior
of linear regression model was essentially found
correlated  with  the  estimated  values  of  the  parameter.
It has been observed, that parameter variability in linear
regression model is based on an analysis of residuals.
Secondly, this study was focused on spline technique
which  is  based  the  spline   regression   methodology.
For this purpose, cubic spline was used for analyzing
data, especially natural splines which provides piecewise
regression functions. After comparison of both
techniques, spline regression gave more reliable and
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efficient results. Using the spline technique, the estimated 6. Schumaker, Larry L., 1981. Spline Functions Basic
values of the parameters gave the clear picture of the Theory.  New  York:  John  Wiley   and   Sons,  Inc,
model and minimized residuals as compared to simple pp: 1-11, 108-134,309-316.
regression model. 7. Smith, P.L., 1979. Splines as a useful and convenient
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