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Abstract: This paper considers the natural convection flow of, viscous, incompressible electrically conducting
fluid in which the Prandtl number (Pr) and magnetic Prandtl number (Pm) have been chosen in the range of
liquid metals in the presence of magnetic field parameter (S) along with a magnetized porous plate. The effect
of above mentioned parameters have also been calculated in terms of coefficients of skin friction, rate of heat
transfer and current density. Moreover, the effects of Prandtl number (Pr), magnetic Prandtl number (Pm) and
magnetic force parameter (S) on velocity, temperature distribution and transverse component of magnetic field
for different values of transpiration parameter  have also been investigated. The well known numerical
techniques finite difference method for primitive variable formulation and asymptotic series solution for stream
function formulation have been used in this investigation. Later, the results obtained by both methods have
been compared and outcome found to be in quite excellent agreement.
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INTRODUCTION layer in uniform flow past a magnetized plate, when

In the presence of strong magnetic field the natural examined by Glauert [11]. He observed that the exceed in
convection boundary layer flow of an electrically the strength of magnetic field implies that the separation
conducting fluid has been investigated [1-4] because of in boundary layer is occurred. Chawla [12] has been
its wide applications in nuclear engineering in connection investigated the laminar boundary layer flow on a
with the cooling reactors. Further contribution to the magnetized plate for low frequency fluctuating by using
problem was given by Cramer and Pai [5] with varying the series expansion has been investigated and observed that
surface temperature. The problem of viscous, electrically the phase angle of surface current decreases and its
conducting liquid past a fixed semi-infinite unmagnetized amplitude increases with frequency. Later, Wilks [13]
plate has been considered by Davies [6] and [8]. Gribben studied the uniform heat flux past a plate by using
[9] studied the magnetohydrodynamic boundary layer perturbation series expansion and obtained results near
flow when an external magnetohydrodynamic pressure the leading edge and downstream regime. The combined
gradient effect the flow pattern. The boundary layer flow effect of forced and free convection fluid flow in the
of electrically conducting gas with an aligned magnetic presence of magnetic filed with uniform heat flux has been
field at large distances from the plate was determined by carried out by Hossain and Ahmad cite{Hossain and
Ingham [10]. He examined that when the magnetic field Ahmad}. The viscous and joule heating effect on free
increases or decreases for a given Mach number which convection flow has been examined by Takhar and
results to thickens the momentum and thermal boundary Soundalgekar [14] by using regular perturbation series
layer thicknesses. The magnetohydrodynamic boundary expansion   technique.  The  viscous  and joule heating on

uniform magnetic field in the stream direction is applied
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the flow of an electrically conducting and viscous
incompressible fluid past a semi-infinite plate has been
examined by Hossain [15]. The effect of thermal radiation
on two dimensional natural convection flow by using
implicit finite difference method  has  been  investigated
by  Molla  et  al.  [16].  Gorla  and  Hossain [17] studied
the  natural  convection flow of a non newtonian fluid
past a uniformly vertical heated slotted surface and
obtained  solution  by  using  finite difference scheme.
The  numerical  solution  of the flow and heat transfer in
a triangular enclosure filled with a fluid in saturated
porous medium with conducting thin fin on the hot
vertical  wall  has  been  analyzed  by  Varol  et   al.  [18].
In  the  presence  of  magnetic  field the natural
convection  flow  in  an inclined rectangular enclosure Fig. 1: The coordinate system and flow configuration
with isothermal vertical wall  has  been  considered by
Ece et al. [19]. Krisna et al [20] studied the natural The coordinate system of the flow model  is  shown in
convective heat transfer in a rectangular porous  duct
with differentially heated sidewalls. Similarly, the case of
natural convective heat transfer along a horizontal
cylinder under isothermal conditions when one part of its
surface is adiabatic has been studied by Gusev et al. [21].
Recently, [22-26] discussed the boundary layer heat
transfer in the presence of magnetic field for different
fluids.

In light of above literature survey the hydromagnetic
natural convection flow along a magnetized vertical
porous plate has not been treated previously. In present
study the effects of varying the Prandtl number, Pr,
magnetic Prandtl number Pm and magnetic force
parameter S, on coefficient of skin friction ,

rate of heat transfer  and current density

 are shown. The effects of above mentioned

parameters on velocity profile, temperature distribution
and transverse component magnetic field are also
examined. The numerical solutions for intermediate range
of transpiration parameter  have been obtained by using
finite difference method. The asymptotic series solution
for small and large value of transpiration parameter  has
been compared with the numerical solutions that have
been obtained by finite difference method and found to be
in concordance.

Basic Equations and Flow Model: In present study, We
consider a steady two-dimensional
magnetohydrodynamic natural convection flow of an
electrically conducting,  viscous  and  incompressible
fluid  past   a   uniformly    heated   vertical porous   plate.

Fig. 1. Here, the  x-axis  is  taken along  the  surface  and
y-axis is normal to it.

In Fig.1 ,  and  are momentum, thermal andM T H

magnetic field boundary layer thicknesses. The
dimensioned boundary layer equations purposed by
Davies [6-7] are given as under

(1)

(2)

(3)

(4)

(5)

The boundary conditions

(6)

Now, we introduce the following dependent and
independent variables to make dimensionless above
equations
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Solution Methodologies: To get the numerical solutions

(7)

By using (7) into (1)-(6) we get the dimensionless
boundary layer equations and boundary conditions in the
following form

(8)

(9)

(10)

(11)

(12)

Here, u and v are dimensionless fluid velocity
components in x and y-direction respectively, G  and Gx y

are the dimensionless x and y-components of magnetic
field,  is being the dimensionless temperature of  the
fluid  in  boundary layer. Here, Pr, S, Pm and G  arerL

Prandtl number,  magnetic  force  parameter  and Grashof
number respectively which are defined as

 where, µ,

,  and L are dynamic fluid viscosity,  kinematic
viscosity,   magnetic   diffusion   and   characteristic
length  respectively.  In  equation  (6),  V    is  surface0

mass  flux,  which  is   assumed  to  be  uniform,  when
fluid  is  being withdrawn through the surface it is
negative  and  when  fluid   is   being   blown  through  it
is    positive.     In     our    present    investigation   we
shall  consider that V  is for the case of withdrawal of0

fluid.

of the problem, we will use two methods namely (i)
Primitive variable transformation for finite difference
method and (ii) Stream function formulation for
asymptotic series solutions near and far from the leading
edge of the plate.

Primitive Variable Transformation (PVF): The primitive
variable formulation is used to convert the above system
of equation in convenient form and then these equations
are discretized by using finite difference method to get the
numerical solutions for entire value of transpiration
parameter . For this purpose, we define the following
transformations for the dependent and independent
variables:

(14)

By substituting (14) into equations (8)-(12) with
boundary conditions (13) we have

(15)

(16)

(17)

(18)

(19)

The transformed set of boundary conditions are
given below
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(20)

We will discretize the equations (15)-(19) and the
boundary conditions (20) by using the finite difference
method using central difference for convective terms, out
of which we get a system of tri-diagonal algebraic
equations. The Gaussian elimination  technique  is  used
to  solve  these   tri   diagonal   equations.   Here we
adjust =0.025 and Y=0.01 for  and Y grids
respectively. The solutions  are  obtained  for  small (22)
values of Prandtl number Pr and  magnetic  Prandtl
number  Pm in  the  range  of  liquid  metals  that  are
often used in nuclear cooling system and for strong Which reduces the set of equations to
magnetic force parameter S. The solutions are then
obtained for different values of pertinent physical
parameters,  namely,  the  magnetic  field   parameter, S,
the  magnetic  Prandtl  number,  Pm, the Prandtl, Pr. (23)
Finally, the results are obtained in coefficients of skin
friction, , rate of heat transfer,

 and current density  defined

in equation (21). Effect of different physical parameters are
also obtained in form of velocity, temperature and
transverse component of magnetic field and shown
graphically in Figures 4-6. Once we know the solutions of
the equations (15)-(19), we are at the position to measure
the physical quantities such as of coefficients skin
friction, rate of heat transfer and current density from the
relation given below, which are important from the
application point of view, from the following
dimensionless expressions

(21)

Now, in the following section the solution will be
obtained for small and large value of local transpiration
parameter .

Stream Function Formulation (SFF): To get the numerical
solutions for small and large values of transpiration
parameter  for the steady state equations, we define the
flow variables as given below:

(24)

(25)

Boundary conditions to be satisfied by the above
equations are

(26)

When  is small: We can expand all the depending
functions in power of $\xi$ by considering ( <<1) near the
leading edge. Accordingly, we consider that

(27)

sing (27) into (23)-(26) and taking the term up to O( )
following sets of equations are obtained: O( )
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Fig. 2: The behavior of coefficients of (a) skin friction  (b) rate of heat transfer  and (c) current

density  at the surface against  for different values of Prandtl number Pr=0.01, 0.05, 0.08, 0.1 when

Pm=0.1 and S=0.6.

Fig. 3: The behavior of coefficients of (a) skin friction  (b) rate of heat transfer  and (c) current

density  at the surface against  for different values of magnetic force parameter S = 0.0, 0.5, 1.0, 1.5

when Pm=0.1 and Pr=0.1

Fig. 4: a) Velocity profile (b) temperature distribution and (c) transverse component of magnetic field against for various
values of  = 1.0, 3.0, 5.0, 8.0, 10.0 against Y for different values of Prandtl number Pr=0.01, 0.1 when Pm=0.1,
S=0.1.

Fig. 5: a) Velocity profile (b) temperature distribution and (c) transverse component of magnetic field against for various
values of  = 1.0, 3.0, 5.0, 8.0, 10.0 against Y for different values of magnetic force parameter S=0.0, 0.5 when
Pm=0.1, Pr=0.1.
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Fig. 6: a) Velocity profile (b) temperature distribution and (c) transverse component of magnetic field against Y for
various values of  = 1.0, 3.0, 5.0, 8.0, 10.0 against Y for different values of magnetic Prandtl number Pm=0.001

We can calculate the values of the coefficients skin
(28)

(29)

(30)

the boundary conditions for O( ) are0

(31)

O( )1

(32)

(33)

(34)

The boundary conditions for O( ) are1

(35)

The equations (31)-(35) are nonlinear coupled
equations, the solutions of these equations are obtained
by Nactsheim-Swigert iteration technique together with
six order implicit Runge-Kutta-Butcher initial value solver.

friction, rate of heat transfer and current density at the
surface in the region near the leading edge against  with
the help of following relation.

(36)

The results obtained with the help of the equations
(31)-(35) for different values of magnetic Prandtl number
$Pm$=0.01, 0.05, 0.1 and keeping other parameter constant
i.e. Prandtl number Pr=0.1 and magnetic force parameter
S=0.2 are entered in Tables 1-3 in terms of coefficients of
skin friction, rate of heat transfer and current density for
for small values of .

When  is large: In this subsection, we derive the
simplified form of equations to finding the solution of
equation   (23)-(25)   along  with  boundary  conditions
(26) for    large   value   of  transpiration  parameter .
The  order  of magnitude analysis of various terms in
these  equations  shows that largest terms are $f'''$ and
f’  in equation (23),  and  in equation (24) and ,

 in equation (25) and it needs to be balanced in
magnitude. For this purpose we may assume that  is
small and hence its derivative is large. It is essential to
find the appropriate scaling for, f, ,  and . On
balancing f''' and f  in equation (23),  and  in
equation (24) and  and  in (25), it is found that =
O( ), f = O( ) and  = O( ). Therefore following1 3 3

transformations may be introduced to overcome this
difficult situation.

(37)
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Table 1: Numerical values of coefficient of skin friction  obtained for Pm= 0.01, 0.05, 0.1 when S=0.2, Pr=0.1against  by two methods.

Pm=0.01 Pm=0.05 Pm=0.1
--------------------------------------- ------------------------------------------ ----------------------------------------------------
FDM ASS FDM ASS FDM ASS

0.0 0.93534 0.93511ss 0.93662 0.93152ss 0.93651 0.93126ss
0.1 0.96380 0.96259ss 0.96364 0.95316ss 0.96345 0.95312ss
0.5 1.06860 1.01312ss 1.06804 1.07321ss 1.06734 1.07384ss
1.0 1.16956 1.14562ss 1.16815 1.13296ss 1.16640 1.15318ss
2.0 3.64394 - 3.64782 - 3.65670 -
4.0 3.39722 - 3.29929 - 3.21341 -
8.0 1.51303 1.01250Ls 1.33319 1.21713Ls 1.29372 1.13471Ls
10.0 1.21663 1.01000Ls 1.04678 1.01000Ls 1.01901 1.01000Ls

Table 2: Numerical values of coefficient of heat transfer  obtained for Pm= 0.01, 0.05, 0.1 when S=0.2, Pr=0.1against  by two methods.

Pm=0.01 Pm=0.05 Pm=0.1
--------------------------------------- ------------------------------------------ ----------------------------------------------------
FDM ASS FDM ASS FDM ASS

0.0 0.36757 0.36538ss 0.36757 0.36571ss 0.36757 0.36557ss
0.1 0.37233 0.37231ss 0.37233 0.37231ss 0.37233 0.37203ss
0.5 0.39262 0.39251ss 0.39262 0.39241ss 0.39261 0.39141ss
1.0 0.41865 0.41437ss 0.41863 0.41319ss 0.41861 0.41208ss
2.0 0.24558 - 0.24473 - 0.24095 -
4.0 0.37852 - 0.37592 - 0.37474 -
8.0 0.79408 0.80000Ls 0.79483 0.80000Ls 0.79519 0.80000Ls
10.0 0.99680 1.00000Ls 0.99729 1.00000Ls 0.99744 1.00000Ls

Table 3: Numerical values of coefficient of current density  obtained for Pm= 0.01, 0.05, 0.1 when S=0.2, Pr=0.1against  by two methods.

Pm=0.01 Pm=0.05 Pm=0.1
--------------------------------------- ------------------------------------------ ----------------------------------------------------
FDM ASS FDM ASS FDM ASS

0.0 0.36401 0.36217ss 0.36550 0.36419ss 0.36733 0.36109ss
0.1 0.36445 0.36391ss 0.36772 0.36592ss 0.37177 0.37115ss
0.5 0.36635 0.36271ss 0.37728 0.37732ss 0.39111 0.39471ss
1.0 0.36877 0.36201ss 0.38972 0.38831ss 0.41678 0.41541ss
2.0 0.10729 - 0.13645 - 0.17849 -
4.0 0.12171 - 0.22577 - 0.39003 -
8.0 0.14577 0.14357Ls 0.40626 0.40000Ls 0.79790 0.80000Ls
10.0 0.15864 0.15000Ls 0.50268 0.50000Ls 0.99873 1.00000Ls
Here ss and Ls are presented the small solution and large solution for the values of 

B substituting (37) into (23)-(36), we will obtain the The transformed form of boundary equations that can
following system of equations satisfied by the above equations are

(38) Now  the  expansion of functions F, ,  in powers

form

(39)

(40)

(41)

of  by using (42) into (38)-(41) can be written in the1

(42)



0 0 0 0F F′′′ ′′+ + Θ =

0 0 0Pm′′′ ′′Φ + Φ =

0 0 0Pr′′ ′Θ + Θ =

0 0 0 0 0

0 0 0

(0) (0) 0, 0, (0) 1, (0) 1
( ) 0, ( ) 0, ( ) 0

F F
F

′ ′

′

= = Φ = Φ = Θ =

∞ = Φ ∞ = Θ ∞ =

1 1 1 0F F′′′ ′′+ +Θ =

1 1 0Pm′′′ ′′Φ + Φ =

1 1 0Pr′′ ′Θ + Θ =

1 1 1 1 1

1 1 1

(0) (0) 0, 0, (0) 0, (0) 0
( ) 0, ( ) 0, ( ) 0

F F
F

′ ′

′

= = Φ = Φ = Θ =

∞ = Φ ∞ = Θ ∞ =

3/ 4 1/ 4

3/ 4 1/ 4

1/ 4 1/ 4

(0)

(0)

(0)

L f

L w

L u

Gr x C F

Gr x J

Gr x N

− −

− −

′′=

′′= Φ

′= −Θ

3/4 1/ 4Gr x C fL
− − 1/ 4 1/ 4Gr x NuL

3/ 4 1/ 4Gr x JwL
− −
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By equating like powers of  from both sides we have from  the  plate  have  been   solved   by   using

(43)

(44)

(45)

and the boundary conditions are

(46)

from which we see that

(47)

(48)

(49)

(50)

The  solution  obtained  by  these   equations
enables  us  to calculate the solution of physical
quantities that are important in many physical phenomena
in terms of different parameters for large values of
transpiration parameter  with the help of following
expressions

(51)

The  numerical    solutions   obtained by
expressions  (43)-(50)  are  entered  in   Tables   1-3   for
large  values  of  transpiration  parameter     and
compared with the solution that obtained by finite
difference  method  and found to be in excellent
agreement.

RESULTS AND DISCUSSIONS

Equations (15)-(19) along with boundary conditions
(20) have been solved numerically for all values of the
transpiration parameter  by using finite difference
method. Similarly equations (23)-(25) and the boundary
conditions (26) sufficiently near to  the  plate  and  away

asymptotic series solutions. Later, to test the accuracy of
the results obtained by finite difference method is
compared with the results obtained by asymptotic series
solution and found to be in excellent agreement. We shall
now give a brief discussion on the effects of Prandtl
number Pr, magnetic force parameter S and magnetic
parameter $Pm$ on coefficients of skin friction

, rate of heat transfer  and

current density  in section 3.1. The detail of
velocity profile, temperature distribution and transverse
component of the magnetic field for varying the
parameters Pr, $Pm$ and magnetic force parameter S for
different values of transpiration parameter  is given in
section 3.2.

The Effect of Physical Parameters on Skin Friction,
Current Density and Rate of Heat Transfer: Figures 2(a)-
2(c) exhibiting the influence of different values of Prandtl
number Pr = 0.01, 0.05, 0.08, 0.1 for magnetic Prandtl
number Pm=0.1 for the range of liquid metals and
magnetic force parameter S=0.6 on coefficients of skin
friction, rate of heat transfer and current density at the
surface. From these figures, it is shown that the
coefficient of skin friction decreases and coefficient rate
of heat transfer and current density at the surface
increases. From this phenomena we got the information
that the increase in the value of Pr implies the rise in
kinematic viscosity of the fluid and reduce the thermal
diffusion for this reason the thermal and magnetic field
boundary layer decreases and momentum boundary layer
thickness increases. The increase in magnetic force
parameter S increase the coefficient of skin friction
actively in the middle range of the surface of the plate but
the coefficients rate of heat transfer and current density
increases at very low margin near the surface of the plate
in Figures 3(a)-3(c). The reason is that with the increase of
magnetic force parameter S the magnetic energy increases
which extract the kinetic energy of the fluid, thus the
coefficients of skin friction, rate of heat transfer and
current  density  increases. current with in the boundary
layer that tends to spread away from the surface and this
results in thickening the momentum and magnetic field
boundary layer thickness, but these effects have no
significant role in the case of coefficient of rate of heat
transfer. Finally, we can see that the results obtained by
finite difference method and asymptotic series solution
are with in good agreement near the leading edge and in
down stream regime.



3/4 1/ 4Gr x C fL
− −

1/ 4 1/ 4Gr x NuL
3/ 4 1/ 4Gr x JwL
− −
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The Effects of Physical Parameters on Velocity, The  values  of  velocity,  temperature  distribution
Temperature and Transverse Component of Magnetic and transverse component of magnetic field
Field: The velocity, temperature and transverse decreases  with the increase of transpiration
component of magnetic field distributions obtained by the parameter  for different values of Prandtl number, Pr,
finite difference method for various values of transpiration magnetic Prandtl number Pm and magnetic force
parameter  are displayed in Figs. 4-6. The aim of these parameter S.
figures is to display how the profiles vary in  to control The results obtained by finite difference method for
the boundary layer thickness. The transpiration parameter primitive variable formulation for entire values of

in present investigation is taken as positive for suction. transpiration parameter  have been compared by
It is shown that the values of velocity, temperature and asymptotic series solution for stream function
transverse component of magnetic field decreases in formulation near the leading edge and in down stream
magnitude as  increases in Figs 4-6. This phenomena regime and outcome has been found in quite
occurs due to the very strong reason that the suction agreement.
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