
Middle-East Journal of Scientific Research 12 (2): 182-194, 2012
ISSN 1990-9233
© IDOSI Publications, 2012
DOI: 10.5829/idosi.mejsr.2012.12.2.71012

Corresponding Author: Amin Y. Noaman, Faculty of Computers and Information Technology,
King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.

182

Towards Achieving an Optimum Performanceof
XML Data into Both Types of XML Databases:

XML-Enabled Databases and Native XML Databases

Amin Y. Noaman and Amal Almansour

Faculty of Computers and Information Technology,
King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia

Abstract: EXtensible Markup Language (XML) promises to be the standard language for data representation
in e-business, particularly when that data is exchanged over or browsed on the Internet since it is nested and
having a self-describing structure that provides a simple yet flexible means for business applications to model
and exchange data. There are two alternative database types used for of storing and retrieving XML documents:
native XML databases and XML-enabled relational databases. The main objective of this paper is to recognize
the optimal situations on whether to use a native XML database or an XML-enabled relational database to
achieve optimum performance in view point of the time for XML document reconstruction from the database
and the time required to import from external XML sources into the databases. After running the required
experiments, we concluded that the native XML database needs more disk space to store both data and index
than the XML-enabled database and that native XML database is better than XML-enabled database for
handling the larger data size, the latter is good for handling smaller data sets.

Key words: XML IT HTML DBMS DTD SQL Native Enable E-Business

INTRODUCTION that provide a logical view of a collection of information

The remarkable growth of the World Wide Web in provides update, access, search, security, concurrency,
recent years has been enabled by the possibility to integrity, high availability and centralized administration
cheaply and easily distribute information and applications to other programs andusers entirely through its logical
to users all over the world. As the information on the Web view.
gets more complex and the number of users keeps XML has clearly emerged as the dominant (Meta)
growing, Web developers and Information Technology language of choice for data interchange, messaging,
(IT) managers become aware of the limitations in current metadata modeling, linking and annotation. It is likely to
technologies and standards. The limitations came from be equally as dominant in the areas of information
the fact that the Hyper Text Markup Language (HTML) modeling and management and that is having a profound
is wonderful for delivering information over the Web, impact on the evolution of database and content
but it does nothing to facilitate the integration of Web management technology. As organizations move to
information with existing applications especially portals and XML-based forms to enhance their business
business applications.As companies are keeping processes, the volume of XML and the need for
increasingly large amounts of business critical data in specialized XML storage beyond a centralized DBMS
XML format, it becomes increasingly important for them increases dramatically. Further, the increased reliance on
to be able to store, query and manipulate their XML data web services to power the enterprise infrastructure and
efficiently. This is where XML database comes in the diversification of specialized content management
Managing large amounts of data efficiently and securely systems is also heightening the sense of urgency to
is a problem that is traditionally solved by database manage and manipulate XML content throughout the
management system. A DBMS is a collection of programs enterprise stack.

that is independent of its physical storage. A DBMS

Middle-East J. Sci. Res., 12 (2): 182-194, 2012

183

The ideal customer for an XML database is one who Overall View of XML with its Classes, Advantages and
is skilled at assembling components into a whole that is Capabilities: Trying to define XML is difficult; similar to
greater than the sum of its parts. There are essentially trying to decide on one standard definition for e-business.
three categories of customer who are most likely to benefit Below are three different definitions of XML:
from an XML-centric database:

IT Savvy Enterprises who are competent in desperate systems of business partners by defining
architecting and building large hybrid commercial the meaning of data in business documents” [27].
solutions XML is a language allowing the exchange of
Application and Solution Providers who add value structured data” [2].
higher in the solution stack but require powerful Short for eXtensible Markup Language, a
XML capabilities. specification developed by the W3C, XML is a
System integrators whose value proposition is based pared-down version of SGML, designed especially
on providing integrated business solutions and who for Web documents. It allows designers to create
want to avoid building complex components that do their own customized tags, enabling the definition,
not directly map to site-specific business needs. transmission, validation and interpretation of data

A word of caution; often the ideal XML database
consumer is tempted to build their own XML data store or XML documents contain character data and markup
extend another non-XML commercial product to provide tags. The character data is often referred to simply as
XML support.While XML databases are clearly distinct content, while the markup tags provides structures for
from today’s RDBMS systems, they are no less that content. The simplest way to describe the structure
sophisticated. No sane enterprise or technology provider of XML is to compare it to HTML which most people are
would choose to build an RDBMS rather than license one already familiar with. As in HTML, the structure in XML
(other than RDBMS vendors); do not build your own is built up using markup tags. There is however a very
XML database (or support for XML into a non-XML important difference between tags in HTML and tags in
database) unless it is actually your business to do so. XML; unlike HTML tags, XML tags have no predefined

The reasons for storing XML in a database system meaning which means that users are free to define and use
are the same as for relational data: consistent storage, tags that best suit the data. XML documents can be
transactional consistency, recoverability, high availability, broken down into two pieces the header and the content.
security, efficient query and update operations and The header specifies the version of XML specification
scalability. These are all features which make a database that the document complies with. The content part of the
a much more appropriate repository for XML data than, XML document consists of elements hanging together in
for example, a file system. Thus, XML databases have a logical tree structure, starting with the root element that
gained increasing popularity and importance in recent contains all the other elements.
years. XML databases are the next big wave that has In view point of classes of XML documents, we see
impacts on the business world since the second that most XML documents fall into two main types:
generation of databases, relational database management document-centric and data-centric [1]. The difference
systems. It is applicable in a wide range of application between these types comes from the difference in what
areas. High-level overview of how to use XML with they represent. Both have profoundly different structure
databases and how XML is commonly stored in different and characteristics. The type of XML document can have
types of database management systems is provided in a large impact on the choice of XML DB. The first type is
[1].The requirements for an effective XML-centric data called document centric whichis primarily used for
store dictate that all of the essential capabilities of a full displaying information for humans, having irregular
blown DBMS system be made available. The trimming of structure, mixed content (intermingled markup and
this XML appliance needs to be accomplished through its character data) and significant ordering amongst
singular focus on XML and not by eliminating elements, such as in user's manuals, static Web pages and
functionality such as scalable query processing, trusted marketing brochures. These documents tend to contain
security, scalability, etc. larger grain data and have a less consistent structure from

XML is used to improve compatibility between the

between applications and between organizations” [3].

Middle-East J. Sci. Res., 12 (2): 182-194, 2012

184

document to document than data-centric XML two technologies.Document Type Definition (DTD) is
documents. The second type is named data centric in normally a separate document used to define the
which XML is used as storage or interchange format for constraints on the XML document. It describes the
data that is structured, appears in a regular order and is structure of XML document in terms of elements,
most likely to be machine processed instead of read by a attributes and its data types, valid ordering, nesting etc.
human. Examples of data centric XML are inventory It is written in a language that does not conform to XML.
records, stock quotes, scientific data and sales orders. The DTD is important when exchanging XML documents
In most cases these documents are produced by programs with other applications. The applications can validate the
and consumed by programs. Humans in general do not XML documents with the belonging DTD. But DTD has
come in contact with them; they interact with a some major shortcomings like shallow support to data
representation of the data in the XML document, rendered types, no support of namespaces and DTD not being in
by a program.XML provides many advantages as a data XML format itself (Lee and Chu 2000a). XML Schema is
format over others [4], including: another emerging standard that takes care of these

It is an open source;
Platform-independent; XML Query Languages and its Functionalities: More
It is fully Unicode-compliant. This means that XML and more data on the Web is being presented in XML
can deal with any character sets like English, Chinese format and it is likely that large amounts of tomorrow’s
or Arabic without conflict, thus applications that can data and Web resources will also be available in it.
read XML properly can deal with any combination of Thus, there is a demand for languages to extract subsets
any of these character sets. This advantage of XML of the data stored within an XML document. A number of
makes information sharing possible not only between languages have been created for querying XML
different computer systems but also across different documents including XPath [5], XQuery [6], LOREL [7],
national and cultural boundaries; XQL [8] and XML-QL [9]. For more details, good surveys
Human readable format makes it easier for developers of various XML query languages are done in [10] and
to locate and fix errors than with previous data [11]. The main reason for using an XML query language
storage formats; instead of a SQL-based query language is that data in
Extensibility in a manner that allows developers to XML fundamentally differs from data in traditional models
add extra information to a format without breaking [12]:
applications that where based on older versions of
the format; and Data Structure: XML data is “nested”; it has hierarchical,
A large number of off-the-shelf tools for processing tree-like structure. In contrast, relational data is “flat” and
XML documents already exist. it is organized in the form of a two-dimensional array of

Since XML is a way to describe structured data there is not as rigid as that of relational data. Its structure is
should be a means to specify the structure of an XML unpredictable and irregular. Querying such data and
document. Document Type Definitions (DTD) and XML getting the desired result is quite complex compared to
Schema languages are different mechanisms that are used querying the data having a fixed structure. This kind of
to define the structure for XML documents [4]. With the queries called, XML queries or semistructured queries.
help of a DTD and XML Schema, a user can give a
consistent structure to XML documents: a user can define Depth of Nested Data: XML data is nested and its depth
the elements and attributes that can appear in a document, of nesting can be irregular and unpredictable. Relational
define the number of child elements and the order in databases can represent nested data structures by using
which they should appear, define whether an element can structured types or tables with foreign keys, but it is
include text or is empty, define data types for elements difficult to search these structures for objects at an
and attributes and so on. An XML document that unknown depth of nesting. In XML, on the other hand, it
conforms to the structure and restrictions defined within is very natural to search for objects whose position in a
DTD or XML Schema language is considered to be valid document hierarchy is unknown. An example of such a
(Bray et al. 2004). The sections below will define these query might be “Find all the red things”, represented in

problems.

rows and columns. Moreover, the structure of XML data

Middle-East J. Sci. Res., 12 (2): 182-194, 2012

185

the XPath language (Clark and DeRose 1999) by the sharply with the absence of intrinsic order in the relational
expression //*[@color = "Red"]. This query would be data model. XML query language functionalities were
much more difficult to represent in a relational query addressed in a comparative analysis of XML query
language. Languages [11] and listed as “must have/should have” in

Metadata: In XML, the metadata - information that Language working group. Pointes below enumerate all
describes the structure of the data- is distributed these requirements:
throughout the data itself in the form of tags rather than
being separated from the data. Relational data, on the Supported Operations: The XML query language MUST
other hand, is such that every row of a table has the same support operations on all data types represented by the
columns, with the same names and types. This allows XML Query Data Model.
metadata to be removed from the data itself and stored in
a separate catalog. In XML, it is natural to ask queries that Text and Element Boundaries: Queries MUST be able to
span both data and metadata, such as “What kinds of express simple conditions on text.
things in the 2002 inventory have color attributes”,
represented in XPath by the expression /inventory [@year Universal and Existential Quantifiers: Operations on
= "2002"]/*[@color]. In a relational language, such a collections MUST include support for universal and
query would require a join that might span several data existential quantifiers (, and ~).
tables and system catalog tables.

Inapplicable Values: Because of its regular structure, operations on hierarchy and sequence of document
relational data is “dense”—that is, every row has a value structures.
in every column. This gave rise to the need for a “null
value” to represent unknown or inapplicable values in Combination: The XML query language MUST be able to
relational databases. XML data, on the other hand, may combine related information from different parts of a given
be “sparse”. Since all the elements of a given type need document or from multiple documents.
not have the same structure, information that is unknown
or inapplicable can simply not appear. This flexible nature Aggregation: The XML query language MUST be able to
of XML puts in front a query requirement that poses a compute summary information from a group of related
query with optional predicates, such as “Find all objects document elements.
that are 30 years old and have trekking as a hobby, if they
have a hobby”. Sorting: The XML query language MUST be able to sort

Ordering: In a relational database, the rows of a table are
not considered to have an ordering other than the Composition of Operations: The XML query language
orderings that can be derived from their values. XML MUST support expressions in which operations can be
documents, on the other hand, have an intrinsic order that composed, including the use of queries as operands.
can be important to their meaning and cannot be derived
from data values. This has several implications for the NULL Values: The XML query language MUST include
design of a query language. It means that queries must at support for NULL values.
least provide an option in which the original order of
elements is preserved in the query result. It means that Structural Preservation: Queries MUST be able to
facilities are needed to search for objects on the basis of preserve the relative hierarchy and sequence of input
their order, as in “Find the fifth red object” or “Find document structures in query results.
objects that occur after this one and before that one”.
It also means that we need facilities to impose an order on Structural Transformation: Queries MUST be able to
sequences of objects, possibly at several levels of a transform XML structures and MUST be able to create
hierarchy. The importance of order in XML contrasts new structures.

the requirements [12] published by the W3C XML Query

Hierarchy and Sequence: Queries MUST support

query results.

Middle-East J. Sci. Res., 12 (2): 182-194, 2012

186

References: Queries MUST be able to traverse intra- and XML Database Definition, Types and Requirements:
inter-document references. An XML database is a new kind of database that is

Identity Preservation: Queries MUST be able to preserve XML documents, regardless of how it achieves this [15].
the identity of items in the XML Query Data Model. Native XML database and XML-enabled database are

Operations on Literal Data: Queries SHOULD be able to names. If the XML is not stored internally as XML, it is
operate on XML Query Data Model instances specified called an XML-enabled database. If an XML document is
with the query (“literal” data). stored as XML internally, then it is called a native XML

Operations on Names: Queries MUST be able to perform Tompa 2001) as a collection of XML documents and their
simple operations on names, such as tests for equality in parts, maintained by a system having capabilities to
element names, attribute names and processing manage and control the collection itself and the
instruction targets and to perform simple operations on information represented by that collection. It is more than
combinations of names and data. merely a repository of structured documents or of

Operations on Schemas: Queries SHOULD provide of data, management of persistent XML data requires
access to the XML schema or DTD for a document, if capabilities to deal with data independence, integration,
there is one. access rights, versions, views, integrity, redundancy,

Operations on Schema PSV Infoset: Queries MUST be The technical requirements mentioned in [16] to support
able to operate on information items provided by the this kind of databases are:
post-schema-validation information set defined by XML
Schema. It must provide the basic functionalities, such as a

Extensibility: The XML query language SHOULD functionality (Atomicy, Concurrency, Isolation,
support the use of externally defined functions on all data Durable), administrative tools, backup and recovery
types of the XML Query Data Model. etc.

Environment Information: The XML query language (CRUD) functionality. Query languages like
MUST provide access to information derived from the XPath and XQuery doesn’t provide this
environment in which the query is executed, such as the functionality.
current date, time, locale, time zone, or user. It should support the management of schemas

Closure: Queries MUST be closed with respect to the and the validation of input according to those
XML Query Data Model. schemas.

Since existing database query languages like SQL do and foreign key constraints are absolutely
not meet the new query functional requirements posed by required.
semistructured data like XML, the people working on this Strong indexing mechanism must be provided
technology and the database people who want to Support for common XML-based APIs (DOM.
incorporate this technology within their domain SAX, COM or Java based) in order to manipulate
developed a number of XML query languages. These data.
query languages and tools can be classified into two Programmatic support for connecting to legacy
categories, namely: systems or proprietary interfaces, e.g. SAP.

Languages and tools designed with a document transformation and transport utilities.
focus such as XQL [13] and XPath [14]. Little database maintenance (providing basic
Languages designed with a database focus e.g. functionality for database maintenance, e.g.
LOREL [7] and XML-QL [9]. exporting, importing, backup, re-indexing etc).

designed for storing, accessing and manipulating

both considered as XML databases but with different

database. An XML database is defined in (Salminen and

semistructured data. As is true for managing other forms

consistency, recovery and enforcement of standards.

common query language (e.g. SQL, XPath), ACID

It must provide Create, Read, Update and Delete

(DTD or XML Schema) to define the data structure

Data integrity mechanisms such as primary

Must provide simplified integration with

Middle-East J. Sci. Res., 12 (2): 182-194, 2012

187

Reasons for Storing XML in Databases: Normally XML to use existing databases to store and manage XML
documents will be seen as just a file containing a documents. Using existing databases and their
collection of data, which are transferred from one system products to store XML provides several advantages
to another. So, on the first sight there is no reason to even in this type XML will not be stored in its native
store XML in a database. However, there are two main form [19, 20]. First, relational/object-relational or
reasons for adopting databases to store XML documents: object-oriented databases are well known and are in the

XML itself is not a database, but the other are familiar with these databases and with their
XML-based technology around it and XML itself performance. Thirdly, the traditional databases are
creates a database like environment [1]. On one side, considered a safe choice by the corporate and they
this environment provides many features found in hesitate to switch to new technology suddenly. Relational
databases like storage (XML document), schemas databases were among the first that wanted to disclose
(DTDs, XML Schemas), query languages (XQuery, their data as XML. Storing and managing XML
XML-QL, XPath, XQL), programming interfaces documents in relational databases needs mapping the
(SAX, DOM and so on). On the other side, this hierarchical, tree-type structures to relational structure.
environment lacks many of other features like Therefore the first effort was directed towards enabling or
indexing, security, transaction, multi-user access, extending the capabilities of these databases to
triggers, backup and recovery management which incorporate XML. This effort gave birth to the so-called
belong to Database Management System (DBMS) “XML-enabled databases”.Storing and managing XML
according to [17]. With the growing use of XML natively is adopted by the second type, the XML
documents in data exchange among organizations community initiated this effort and thus developed the
and in making large Web sites, demands persistent so-called “native XML databases”. A native XML
storage mechanisms for XML documents. XML database is often considered as a database being built
documents have to be managed in an efficient way so from scratch for the specific purpose of storing and
that they are available for transfer at any time without querying XML documents. In such databases, the
the need of conversion. They also should be mapping between XML and the database is not required
available for querying and analysis. This is one of the since it stores XML as it is. The following sections
main reasons behind the evolution of XML describe the two XML database types.
databases.
Sooner or later, many of the actual interactions of XML-Enabled Databases: XML-enabled databases are
either business to business (B2B) or business to defined as existing relational/object-relational or object-
consumer (B2C) will be conducted via XML oriented databases that have been extended to provide
messages (SOAP-based Web services, synchronous support for XML documents. Usually, the extension
ebXML message etc.). So those orders, cancellations, comes as a middleware/top layer of the existing databases.
credit checks, requests for quotations, invoices, etc. Since an XML-enabled database is usually
are documents that are the electronic equivalent of relational/object-relational, this thesis will focus only on
paper business documents. Such documents may be this type.
generated from data in a RDBMS, but once produced
they must maintain a different conception of XML-Enabled Database Storage Approach: Major XML-
“integrity”. The document must reflect the snapshot enabled database vendors—such as, Oracle, Microsoft
of reality that produced it, even if “reality” changes. and IBM—can store XML data using one of the following
So for legal and documentation reasons it will be approaches [21-23]:
better to store the XML “snapshot of reality” also in
a database. Beside it will be easier to analyze and Storing the Xml Document as a Whole in CLOB/BLOB:
audit operations based on the unified XML view than XML document is stored as a whole in a single column of
the fragmented transactions in the diverse back-end the relational table that has CLOB/BLOB or VARCHAR
systems [18]. data type as a string of bytes or characters. In this

XML Database Types: Current XML databases are useful for special- purpose applications such as legal
divided into two main types: XML-enabled databases and documents. This approach also called unstructured
native XML databases. The idea behind the first type is storage.

database industry for quite a long time. Second, users

approach, an exact copy of the data is stored. This is

Middle-East J. Sci. Res., 12 (2): 182-194, 2012

188

Shredding, or Decomposing, the XML into Native XML DB STORAGE Approaches: A native XML
relational/object-relational tables: Shredding XML database stores XML documents in their native form.
document involves looking at the XML data, defining a How exactly XML documents are stored within the native
corresponding relational schema (for example, looking at XML database depends on the architecture of that
parent/child relationships in the XML data and database. The architecture of a native XML database is
representing each child as one or more tables in a categorized as one of two types: text-based and
referential integrity constraint with its parent) and model-based [1]:
defining a mapping from the XML data to the relational
schema. That mapping might be manually defined, In a Text-based Native XML Database: XML documents
programmatically defined (most frequently using XML are stored as text. Text can be stored as a file in a file
schema as input) or defined by some combination of system, as a CLOB/BLOB in a relational database, or in a
automatic programming followed by manual editing for proprietary text format. In such databases, text indexes are
fine-tuning. When shredding based on mapping between maintained to allow the query engine to jump to any point
the XML data and the relational schema using XML in any XML document very easily. After finding the right
schema as input, this approach may call a structured point via the indexes, the database can retrieve the entire
storage. Structured storage allows preserving fidelity of document in one read, because it is stored in the original
the data at the relational level-hierarchical structure is hierarchical format. This gives a tremendous speed
preserved, while order among elements is ignored. advantage.

Combining the above Two Approaches: Also a In a Model-Based Approach: The database does not store
combination of the above approaches can be used. XML document as text. Prior to storing any data on
In fact, Oracle [24] allows developers to take a hybrid permanent media, XML document is modeled i.e.
approach, storing frequently queried parts as structured transformed into an internal object model representing the
storage, while keeping the remainder parts as source XML document. This model is then stored.
CLOB/BLOBs. Either way, storing XML in a relational. Selected XML modeling has to be rich enough to model

Native XML Databases: In [1], a native XML databases possible choices for modeling XML. How the model is
are defined as a databases designed from the ground-up stored depends on the product. Some databases store the
especially to store, manage and query XML documents. model in a relational or object-oriented database whereas
It stores XML documents in their native form. Like other others use a proprietary storage format suitable for their
databases, they support features like transactions, model. In the case of model-based native XML databases
security, multi-user access, programmatic APIs, query built on other databases are likely to have performance
languages and so on. The only difference from other similar to those databases when retrieving documents for
databases is that their internal model is based on XML the obvious reason that they rely on those systems to
and not something else, such as the relational model. retrieve data. However, in the case of a proprietary
A proposed definition for native XML databases came storage format the performance will most likely have the
from the XML:DB Initiative, native XML database [25]: same (good) performance as text-based native XML

Defines a model for an XML document – as opposed stored.
to the data in that document – and stores and In general, with text-based storage, retrieval of parts
retrieves documents according to that model; of XML documents is much faster than with model-based
Has an XML document as its fundamental unit of storage XML databases. This is due to the longer time
storage, just as a relational database has a row in a needed to reconstruct the XML document if having its
table as its fundamental unit of storage; model. On the other hand, some operations like modifying
Is not required to have any particular underlying the nesting order of the XML elements can prove to be
physical storage model. For example, it can be built faster with model-based storage approaches, since it is
on a relational, hierarchical, or object-oriented faster to apply such transformations on the model of XML
database, or use a proprietary storage format such as document compared to textual representation of one. It is
indexed, compressed files. thus not possible to decide beforehand on the preferred

all the elements of XML documents. DOM is one of the

databases when retrieving data in the order in which it is

Middle-East J. Sci. Res., 12 (2): 182-194, 2012

189

approach for a generic application.In all XML storage Generating the XML test documents.
approaches indexes are used to speed up the retrieval of Preparing both XML DB.
certain parts of XML documents. Loading XML documents into both XML DB.

The Evaluation Criteria: Query Execution Time was the Measuring the query execution time for both XML
evaluation criteria used to evaluate the performance of DB.
query processing in both XML DB. The experiments
based on measuring the time each query takes for Our obtained results are presented with respect to the
execution. Each query was executed five times, after database size. On the database size view, the charts show
excluding the fastest and the slowest runs, the query how changing the databases size effects on the query
execution time will be the average of the middle three runs execution time.
[26]. Based on the results obtained from the above charts,

Experimental Environment and Achieved Results: followed by a summary of them on Table 1:
To provide representative benchmark testing results with
two different XML database systems, all benchmark tests For Query#1: Exact match query shown in Fig. 2:
are performed under the same conditions. All benchmark
tests are performed with the same set of XML documents In general, Tamino outperforms both Oracle storage
and the same queries. For the benchmark testing, five approaches in all different XML document sizes by a
different documents with different sizes were generated. factor of 16.5 times.
For each document size; a couple of document copies are The performance of both Oracle storage approaches
generated so it can be loaded with the two different XML was quite similar.
database systems. The same document was loaded into
each XML database system. Each query was executed For Query#2: Ordered access query shown in Fig. 3:
five times on each document. After getting the results, the
maximum and the minimum result value are dropped and Surprising results came from Tamino: For XML
the mean average is calculated of the remaining three document size=100, 500KB and 1MB, Tamino
values. This mean average represents the result of the outperforms both Oracle storage approaches. It
query execution time on that document.The proposed outperforms Oracle with unstructured/CLOB
experiments architecture for the benchmark testing is storage by a factor of 11.2 times and 10 times for
shown below in Fig.1. The experiment methodology Oracle with structured/object-relational mapping
passes through five stages given as follows: storage. By average it outperforms Oracle with a

Preparing the test queries for both XML DB.

a list of the main observations is displayed below,

Fig. 1: The Proposed Experiments Architecture

Time taken per Document Size QueryNo. 1

0

5000

10000

15000

20000

25000

30000

35000

Loaded Document Size

Ti
m

e
(m

ill
is

ec
)

Oracle CLOBstorage 265.6666667 343.6666667 547 6000 22026.33333

Oracle O-R mapping storage 245 292 406.3333333 6630 29896

Tamino 15.33333333 41.66666667 62.66666667 255.3333333 984.6666667

100 KB 500 KB 1 MB 5 MB 10 MB

Time taken per Document Size QueryNo. 2

0

50000

100000

150000

200000

250000

300000

350000

Loaded Document Size

Ti
m

e
(m

ill
is

ec
)

Oracle CLOB storage 265.6666667 349 588.6666667 6213.666667 22239.33333

Oracle O-R mapping storage 255.3333333 307.6666667 458.3333333 6786.333333 30573

Tamino 15.66666667 47 62.33333333 137609.3333 299916.6667

100 KB 500 KB 1 MB 5 MB 10 MB

Middle-East J. Sci. Res., 12 (2): 182-194, 2012

190

Fig. 2: Query execution times of query#1 on a different XML document sizes

Fig. 3: Query execution times of query#2 on a different XML document sizes

factor of 10.6 times. But with XML document size=5 relational mapping storages and Tamino were similar
and 10MB, Tamino performs poorly comparing to in XML document size=10MB.
both Oracle storage approaches. Both Oracle storage The performance of both Oracle storage approaches
approaches were 16.4 times faster than Tamino. was similar in XML document size=100, 500KB and
Both Oracle storage approaches have almost similar 1MB, but in XML document size= 5 and 10 MB,
performance. Oracle with unstructured/CLOB storage was the

For Query#5: Casting query shown in Fig. 4:

Tamino yields the best performance in all different Fig. 5:
XML document sizes. It outperforms Oracle with
unstructured/CLOB storage by a factor of 17 times Tamino outperforms both Oracle storage
and 6.7 times for Oracle with structured/object- approaches in all different XML document sizes.
relational mapping storage. By average it outperforms It outperforms Oracle with unstructured/CLOB
Oracle with a factor of 11.8 times. Note that the storage by a factor of 10.7 times and 18.1 times for
performance of Oracle with structured/object- Oracle with structured/object-relational mapping

worst.

For Query#6: Regular path expressions query shown in

Time taken per Document Size QueryNo. 5

0

5000

10000

15000

20000

25000

30000

Loaded Document Size

Ti
m

e
(m

ill
is

ec
)

Oracle CLOB storage 266 349 578.3333333 6005.333333 24067.66667
Oracle O-R mapping storage 250 265.6666667 401.3333333 750 1266
Tamino 15.33333333 41.66666667 62 239.6666667 953

100 KB 500 KB 1 MB 5 MB 10 MB

Time taken per Document Size QueryNo. 6

0

10000

20000

30000

40000

50000

60000

70000

Loaded Document Size

Ti
m

e
(m

ill
is

ec
)

Oracle CLOBstorage 276 375 661.6666667 8057.333333 30047

Oracle O-R mapping storage 265.6666667 411.6666667 698 14359.33333 62041.66667

Tamino 52 93.66666667 130 416.6666667 1500

100 KB 500 KB 1 MB 5 MB 10 MB

Middle-East J. Sci. Res., 12 (2): 182-194, 2012

191

Fig. 4: Query execution times of query#5 on a different XML document sizes

Fig. 5: Query execution times of query#6 on a different XML document sizes

storage. By average it outperforms Oracle with a For Query#8: Chasing references query shown in Fig. 6:
factor of 14.4 times. Note that both oracle storage
approaches show an average performance in XML Tamino outperforms both Oracle storage
document size=100, 500KB and 1MB. In fact, Tamino approaches in all different XML document
outperform both Oracle storage approaches by a sizes. It outperforms Oracle with
factor of 4.8 times only in case of small XML unstructured/CLOB storage by a factor of 222.1
documents. So, the query execution time gets higher times (excluding XML document size=5 and
as the XML document size get larger (XML 10MB) and 27.5 times for Oracle with
document size=5 and 10MB). structured/object-relational mapping storage. By
The performance of both Oracle storage approaches average it outperforms Oracle with a factor of 124.8
was similar in XML document size=100, 500KB and times.
1MB, but when XML document size get larger, Note that Oracle with structured/object-relational
XML document size=5 and 10MB, the performance of mapping storage outperforms Oracle with
Oracle with structured/object-relational mapping unstructured/CLOB storage, in fact no results
storage become slightly worse. Inother words, in can be made from Oracle with
XML document size=5 and 10MB, Oracle with unstructured/CLOB storage for this type of
unstructured/CLOB storage outperforms Oracle with queries if the XML document size is large (XML
structured/object-relational mapping storage. document size=5 and 10MB).

Time taken per Document Size QueryNo. 8

0

500000

1000000

1500000

2000000

2500000

3000000

Loaded Document Size

Ti
m

e
(m

ill
is

ec
)

Oracle CLOBstorage 979 19739.66667 110848.6667

Oracle O-R mapping storage 396 3203 19828 657078 2693562.667

Tamino 20.66666667 94 271 296005.3333 299963.3333

100 KB 500 KB 1 MB 5 MB 10 MB

Middle-East J. Sci. Res., 12 (2): 182-194, 2012

192

Fig. 6: Query execution times of query#8 on a different XML document sizes

Table 1: A summary of the main observations on the database size view
Query# Tamnio vs. Oracle CLOB Tamnio vs. Oracle O-R mapping Oracle CLOB vs. Oracle O-R mapping
Query#1 In general, Tamino outperforms both Oracle storages in all different Both Oracle storages have a quite

XML document sizes by a factor of 16.5 times. similar performance.
Query#2 For XML document size<=1MB, Tamino For XML document size<=1MB, Tamino Both Oracle storages have almost

outperforms Oracle CLOB by a factor of outperforms Oracle O-R mapping by a similar performance.
11.2 times. factor of 10 times.
Surprising results came from Tamino: For XML document size>=5 MB, Both
Oracle storages were 16.4 times faster than Tamino.

Query#5 Tamino outperforms Oracle CLOB by Tamino outperforms Oracle O-R Both Oracle storages were similar
a factor of 17 times. mapping by a factor of 6.7 times. in XML document size <=1MB.

Query#6 Tamino outperforms Oracle CLOB Tamino outperforms Oracle O-R Both Oracle s were similar in XML
by a factor of 10.7 times. mapping by a factor of 18.1 times. document size <=1MB.

Query#8 Tamino outperforms Oracle CLOB by a Tamino outperforms Oracle O-R Oracle O-R mapping outperforms
factor of 222.1 times (excluding XML mapping by a factor of 27.5. Oracle CLOB.
document sizes=5 and 10MB).

Concluded Remarks and Future Works: Through our databases.Regarding performance, the experimental study
presented work in this paper, we have discovered that done in the last part of the thesis determined that the
there are good reasons to use either XML-enabled native XML database Tamino has been performing better
relational databases or native XML databases, depending than XML-enabled relational database Oracle for XMark
upon the needs of your particular XML applications. benchmark queries. The main reason could be that the
XML-enabled relational databases are generally ahead of XML-enabled relational database Oracle’s XML support
native XML databases in regards to data integrity, query is not mature yet. With all the experiments results
capability, concurrency and transaction control, combined together, the following are the main findings
standardization and administration. While native XML based on these experiments:
databases have matured a great deal in the past few
years, these areas are still in need of improvement. Native XML database Tamino has better performance
On the other hand, native XML databases offer better than the XML-enabled database Oracle in data-
performance and flexibility especially when dealing centric single document domains, especially in large
with large XML documents. While neither of the database sizes (beyond 5MB). This finding
XML-enabled relational databases two approaches emphasizes the complexity associated with storing
works well at all; but, most business applications do and querying XML data within relational databases
not deal with XML data alone. They have existing and indicates that for some high performance
relational data and also continue to produce relational applications, a native XML repository such as
data and native XML databases still need more time to Tamino is a clear choice for managing and
become a comparable alternative to relational processing semistructured data.

Middle-East J. Sci. Res., 12 (2): 182-194, 2012

193

Changing the size of XML document has impact on 5. Clark, J. and S. DeRose, eds. 1999. XML Path
the performance of the XML DB. Query execution
time increased dramatically when the size of the XML
document became considerably larger (beyond 5MB).
Almost all of the query execution time is independent
of types of queries in case of small XML document
sizes. In other words, it doesn’t change too much
with types of queries (excluding heavy queries that
involve joins).
Native XML database Tamino yields the best
performance in executing heavy queries (Chasing
references queries) in large XML document sizes
where Oracle with unstructured/CLOB storage was
the worst, this is due to the fact that this type of
queries are complex. It involves retrieving more
cross-references between tables.
For queries that process array lookup, the
performance of native XML database Tamino was the
worst - comparing to both Oracle storage approaches
- in large XML document sizes.

As a future work to be done we expect our
experiments to continue and include all the 20 XMark
queries and large XML documents (beyond 10MB).
Also, as XMark is relatively a simple benchmark and
doesn’t test data insert, update and delete operations.
Future research will look into using other benchmarks that
allow comparing the performance of both XML DB types
using data insert, update and delete operations. Finally,
more experiments with different kinds of document-centric
and data-centric XML documents are required.

REFERENCES

1. Bourret, R., 2005b. XML and Databases, Working
Paper, viewed 13 May 2005, from
http://www.rpbourret.com/xml/XMLAndDatabases.
htm, Last updated September, 2005.

2. Bouneffa, M., H. Basson and L. Deruelle, 2001.
E-business: A new challenge for database
management systems, Information &
Communications Technology Law, 10(3): 299-308.

3. Balas, J.L., 2002. What is this XML thing and why do
I need to know about it?, Computers in Libraries,
22(8): 39-41.

4. Obasanjo, D., 2001. An exploration of XML in
database management systems, Working Paper,
viewed 20 June 2005, from
h t t p : / / w w w . 2 5 h o u r s a d a y . c o m /
StoringAndQueryingXML.html.

Language (XPath) version 1.0, W3C
Recommendation, 16 November 1999, viewed 15
October 2005, from http://www.w3.org/TR/xpath.

6. Boag, S., D. Chamberlin, M.F. Fernndez, D. Florescu,
J. Robie and J. Simon, 2005. XQuery 1.0: An XML
Query Language, W3C Working Draft, 15 September
2005, viewed 12 December 2005, from
http://www.w3.org/TR/xquery/.

7. Abiteboul, S., D. Quass, J. McHugh, J. Widom and J.
Wiener, 1997. The LOREL Query Language for
Semistructured Data, International Journal on Digital
Libraries, 1(1): 68-88.

8. Rob, P. and C. Coronel, 2000. Database Systems:
Design, Implementation & Management, 4th ed.,
Cambridge: Thompson Learning.

9. Deutsch, A., M. Fernandez, D. Florescu, A. Levy and
D. Suciu, 1998. XML-QL: A Query Language for
XML, Submission to W3C, 19 August 1998, viewed
10 January 2006, from http://www.w3.org/TR/NOTE-
xml-ql/.

10. Fernandez, M., J. Siméon and P. Wadler, eds. 1999.
XML Query Languages: Experiences and Exemplars,
AT&T Bell Labs Technical Report, Draft manuscript,
communication to the XML Query W3C Working
Group September 1999, viewed 28 March 2006, from
http://homepages.inf.ed.ac.uk/wadler/papers/xml-
exemplars/xml-exemplars.pdf.

11. Bonifati, A. and S. Ceri, 2000. Comparative Analysis
of Five XML Query Languages, ACM SIGMOD
Record, 29(1): 68-77.

12. Chamberlin, D., J. Robie and D. Florescu, 2000. Quilt:
an XML query language for heterogeneous data
sources, in: Proceedings of the 3rd International
Workshop on the Web and Databases (WebDB
2000), Dallas, Texas, May 2000, in Lecture Notes in
Computer Science, Berlin: Springer-Verlag, 2000, 53-
62.

13. Robie, J., J. Lapp and D. Schach, 1998. XML Query
Language (XQL), in: Proceedings of the W3C Query
Language Workshop (QL-98), Boston, MA,
December 3-4, 1998, viewed 10 January 2006, from
http://www.w3.org/TandS/QL/QL98/pp/xql.html.

14. Clark, J. and S. DeRose, eds. 1999. XML Path
Language (XPath) version 1.0, W3C
Recommendation, 16 November 1999, viewed 15
October 2005, from http://www.w3.org/TR/xpath.

15. McGoveran, D., ed. 2001. The Age of the XML
Database, eAI Journal, October 2001, viewed 11
November 2005, from http://www.eaijournal.com/
PDF/XMLMcGoveran.pdf.

Middle-East J. Sci. Res., 12 (2): 182-194, 2012

194

16. Fohn, R., 2002. XML Database Systems, 22. ZapThink, 2002. XML Data Storage Technologies
PowerwareInformatik, April 2002, viewed 10 January and Trends: Native XML Data Stores (NXDs) and
2006, from http://www.powerware.ch/doc/XML Datab XML Extensions to RDBMS, March 2002, viewed 25
ases.pdf. October 2005, from http:// www.softwareag.com/

17. Rob, P. and C. Coronel, 2000. Database Systems: t a m i n o / r e f e r e n c e s / Z a p T h i n k -
Design, Implementation & Management, 4th ed., XML_DataStores_March2002.pdf.
Cambridge: Thompson Learning. 23. IBM, 2005. The IBM approach to unified

18. Champion, M., 2001. Storing XML in Databases, eAI XML/relational databases, IBM Technical Report on
Journal, October 2001, viewed 05 May 2006, from Unified XML/relational storage, March 2005, viewed
h t t p : / / w w w . e a i j o u r n a l . c o m / P D F / 10 January 2006, from ftp://ftp.software.ibm.com/
StoringXMLChampion.pdf. software/ data/pubs/papers/GC34-2496.pdf.

19. DeJesus, E.X., 2000. XML Enters the DBMS Arena, 24. Oracle, 2002. Oracle9i XML Database Developer's
Computerworld, October 2000, viewed 10 January Guide - Oracle XML DB Release 2 (9.2), Oracle
2006, from http://www.computerworld.com Corporation, viewed 15 May 2006, from
/news/2000/story/0,11280,53026,00.html http://www.stanford.edu/dept/itss/docs/oracle/9i/a

20. Kappel, G., E. Kapsammer and W. Retschitzegger, ppdev.920/a96620/xdb02rep.htm.
2001. XML and Relational Database Systems - A 25. Staken, K., 2001. Introduction to Native XML
Comparison of Concepts, in: Proceedings of the Databases, O’Rilley XML.com, 31 October 2001,
International Conference on Internet Computing, Las viewed 28 October 2006, from http://www.xml.com/
Vegas, Nevada, pp: 199-205. pub/a/2001/10/31/nativexmldb.html.

21. Barrett, A., ed. 2001. Databases Embrace XML, Server 26. Runapongsa, K., J.M. Patel, H.V. Jagadish, Y. Chen
Workstation Expert, August 2001, viewed 12 and S. Al-Khalifa, 2006. The Michigan Benchmark:
December 2005, from http://swexpert.com/ Towards XML Query Performance Diagnostics,
F/SE.F1.AUG.01.pdf. Information Systems Journal, Elsevier, 31(2): 73-97,

viewed 10 January 2006, from
http://www.sciencedirect.com/.

