International Journal of Microbiological Research 6 (2): 100-107, 2015 ISSN 2079-2093 © IDOSI Publications, 2015 DOI: 10.5829/idosi.ijmr.2015.6.2.93167

GC-MS Analysis and Antifungal Activity of Senna alata Linn

^{1,2}R.M. Kolawole, ¹B.T. Thomas, ³J.B. Folorunso and ¹A. Oluwadun

¹Department of Cell Biology and Genetics, University of Lagos, Akoka, Lagos, Nigeria ²Department of Medical Microbiology and Parasitology, Olabisi Onabanjo University, Sagamu, Ogun State, Nigeria ³Medical Laboratory Department, Health Services Directorate, Olabisi Onabanjo University, Ago Iwoye, Ogun State, Nigeria

Abstract: This study evaluated the antifungal activity, chemical and the phytochemical constituents of Senna alata Linn using standard agar well diffusion and broth dilution techniques, GC-MS and standard recommended method of the Association of Analytical Chemists respectively. Results obtained revealed that all the different extracts showed reasonable zone of inhibitions but to varying degree of efficacies. Of the different extracts tested, ethanolic extract displayed the highest activity as reflected in their mean zone of inhibition ranging from 73.6mm to 167.4mm. This was followed by the activity of the chloroform extract that ranges from average zone of inhibition of 38-91mm. The aqueous extract showed the least mean zones of inhibition that ranges from 33-57mm. This observation was also corroborated by the MIC and the MBC values. The mass spectra of the compounds found in the extract was matched with the National Institute of Standards and Technology (NIST) library. The GC-MS analysis of ethanolic extract led to identification of 78compounds including xylene, alcohol, aldehydes, alkanes, alkenes, fatty alcohol, acetic acid, ketones and ester. The compounds were identified by comparing their retention time and peak area with that of literature and by interpretation of mass spectra. Also, Senna alata Linn was also found containing saponins, alkaloids, tannins, phlobatannins, anthraquinones, cardenolides, steroidal ring and flavonoids. It can thus be inferred that Senna alata Linn possesses good antifungal activity and such activities might be ascribed to the presence of the phytochemicals and some of the chemical constituents.

Key words: GC-MS · Antifungal · Senna alata Linn · Phytochemicals

INTRODUCTION

Herbal medicine is an alternative form of therapy and has become the mainstream throughout the world due to the growing resistance of pathogens to conventional antimicrobials [1]. The development of herbal products is dependent on local botanical flora. Medicinal plants are distributed worldwide and many abound in tropical countries. Nigeria has a rich variety of medicinal plants distributed in the different geoecological regions of the country. The genus *Senna* Mill, originates from the Arabic name "Sana" and belongs to the subtribe Cassiinae tribe Cassieae, sub-family Caesalpinioideae, family Leguminosae and order Fabales.

Senna alata L. Roxb. is an important ethno medicinal plant known as *ringworm senna*, as the leaves of the

plant are directly used for curing skin infections like ring worm. The plant is commonly known as candle brush tree or empress candle. The leaves of the plant are known to possess antimicrobial [2], anti-tumor [3,4], antioxidant [5], antimutagenic [6] and analgesic [7] activities. The leaves of the plant are also known to possess potent antifungal properties [8, 9]. A 10 year study on human proved that the leaf extracts can be readily used as a herbal medicine for treatment of Pityriasis versicolor, a fungal infection without any side effects [10].

The ointment made from the ethanolic extracts of the leaves is used as topical treatments on acute lesions of dermatophytosis in bovine and prevented its reoccurrence [11]. Apart from the above mentioned properties, the plant is known to possess hepatoprotective [12], antihyperglycemic [13] activities

Corresponding Author: Rachael Modupe Kolawole, Department of Medical Microbiology and Parasitology, Olabisi Onabanjo University, Sagamu, Ogun State, Nigeria. and is also used in the treatment of opportunistic infections in AIDS patients. Recently, the extracts of the plant have been used in cosmetics and dermatological skin care products [14]. This research was aimed at determining the antifungal activity, chemical and phytochemical constituents of *Senna alata* Linn

MATERIAL AND METHODS

Collection of Plant Material and Plant Authentication: *Sennaalata* Linn leaves were collected around Sagamuenviron, identified and vouchered by a senior plant taxonomist (Mr T.K. Odewo) at the Dept. of Botany, University of Lagos, Akoka, Lagos, Nigeria.

Preparation of Plant Materials and Extracts: The procured plant materials were air dried and processed by method described by Ijeh *et al.* (2005) The resulting filtrates were then concentrated by evaporation on a rotary Evaporator.

Phytochemistry Analysis: This was carried out on the aqueous extract following the procedure described by Sofowora [15].

Antimicrobial Activity: The antimicrobial activity of the tested plants was carried out using both the broth dilution and Agar diffusion method. Both techniques were carried as described by Parekh and Chanda (2007).

Gas Chromatography (GC)–Mass Spectrometer (MS) Analysis

Instruments and Chromatographic Conditions: GC-MS analysis was carried out on GC-MS-QP2010 Shimadzu system comprising a gas chromatograph interfaced to a mass spectrometer instrument employing the following conditions: column VF-5MS fussed silica capillary column (30.0m x 0.25mm x 0.25im, composed of 5% phenyl/95% dimethylpolysiloxane), operating in electron impact mode at 70ev; helium (99.999%) was used as carrier gas at a constant flow of 1. ml/min and an injection volume of 0.5il was employed (Split ratio of 10:1) injector temperature 240°C ion-source temperature 200°C. The oven temperature was programmed from 70°C (Isothermal for 3 min), with an increase of 10°C/min, to 240°C, ending with a 9min isothermal at 280°C. Mass spectra were taken at 70ev; a scan interval of 0.5 seconds and fragments from 40 to 440Da. Total GC running time was 40min.

Identification of Compounds: Interpretation of mass spectrum GC-MS was conducted using the database of National Institute Standard and Technology (NIST) having more than 62,000 patterns. The spectrum of the unknown component was compared with the spectrum of the known components stored in the NIST library. The name, molecular weight and structure of the components of the test materials were ascertained.

RESULTS

The antifungal activity of *Senna alata* Linn is depicted in the table below. As shown in the Table 1, all the different extracts shows reasonable zone of inhibition but to varying degree of efficacy. Of the different extracts tested, ethanolic extract displays the highest activity as reflected in their mean zone of inhibition ranging from 73.6mm to 167.4mm. This was followed by the activity of the chloroform extract that ranges from average zone of inhibition of 38-91mm. The aqueous extract shows the least mean zones of inhibition that ranges from 33-57mm. This observation was also corroborated by the MIC and the MBC values.

Table 1: In vitro Antibacterial Activities of Crude Ethanolic Extracts of Medicinal Plants

	Concentration of extracts/ Zones of inhibition (mg/ml)													
	Aqueous extract			Ethanolic extract		Chloroform extract		n-Hexane extract						
													Flucona zole	
Org	50	75	150	50	75	150	50	75	150	50	75	150	250 mg/ml	50% ethanol/Chloroform/n-Hexane
AN	0	0	0	10	13	26	12	15	20	15	21	25	19.2	0.00/0.00/0.00
AC	0	0	0	13	18	19	0	14	15	0	10	15	17.4	0.00/0.00/0.00
AF	10	16	18	12	22.8	33.2	0	12	20	0	0	10	16.0	0.00/0.00/0.00
PV	15	18	20	15.6	26.4	36.8	13	16	18	5	8	10	28.0	0.00/0.00/0.00
FS	0	0	6	13	16	20	0	0	0	6	8	14	17.0	0.00/0.00/0.00
TA	8	7	13	10	16.3	32.4	13	16	18	0	10	15	22.4	0.00/0.00/0.00

AN = Aspergillus niger, AC= Aspergillus carbonarius, AF= Aspergillus flavus, PV= Penicillium verrucosum, FS= Fusarium solani, TA= Trichoderma atrovidae, AE= Aqueous extract, ET= Ethanolic extract, CE= Chloroform extract, NHE = normal hexane extrac

	MIC (mg/n	nl)			MFC (mg/ml)					
ORG	AE	ET	CE	NHE	AE	ET	CE	NHE		
AN	310	38.8	77.5	155	>620	155	310	620		
AC	310	19.4	77.5	77.5	620	77.5	620	620		
AF	155	4.8	38.8	77.5	620	38.8	310	310		
PV	19.4	2.4	19.4	38.8	77.5	9.7	77.5	310		
FS	310	9.7	19.4	19.4	>620	38.8	155	310		
ТА	155	19.4	77.5	155	620	77.5	310	620		

Intl. J. Microbiol. Res., 6 (2): 100-107, 2015

Table 2: Minimum inhibitory and fungicidal concentration of Senna alata Linn

. Library Search Report

Dat Dat Acc Ope Sat Mis ALS	ta Path ta File g On erator mple SC S Vial	: C:\msdchem\ : KOLAWOLE PLJ : 15 Aug 2014 : MEJIDA/ACHEN : KOLAWOLE PLJ : 3 Sample 1	l\methods\okoh METHOD.M\ ANT.D 23:45 M ANT Multiplier: 1			
Sea	arch Li	braries: C:\\ C:\\	Database\NIS708.L Database\NIS711.L	Min	nimum Qualit nimum Qualit	y: 90 y: 90
Uni	known S	pectrum: Ape	x			
Int	tegratik	on Events: Cher	nStation Integrator - event	s.e		
₽kŧ	RT	Areas	Library/ID	Ref#	CASF	Qual
1	5.493	2.02 C:\Data	base\NIST11.L			
		2-Indano	1	15273	004254-29-9	25
		Benzene,	1,2-diethyl-	14837	000135-01-3	22
		6-Octena	1, 3,7-dimethyl-, (R)-	26751	002385-77-5	15
2	5.539	3.90 C:\Data	base\NIST11.L			
		Benzene,	1-methyl-3-propyl-	14854	001074-43-3	46
		Benzene,	1-methyl-3-propyl-	14858	001074-43-7	42
		Benzene,	1-methy1-3-propy1-	14853	001074-43-7	42
3	5 613	4 72 Collected	ALCOLUTONIA T			
~	0.015	Penzene	1 2-diothul-	14040		
		Benzene,	1.2-diethyl-	14032	000135-01-3	87
		Benzene,	1.3-diethyl-	14030	000133+01+3	8.6
			sto grocult	14033	000141-33-3	23
-4	5.653	18.64 C:\Data	base\NIST08.L			
		Benzenė,	1,2-diethyl-	14664	000135-01-3	90
		Benzene,	1,2-diethyl-	14659	000135-01-3	89
		Benzene,	1,4-diethyl-	14662	000105-05-5	78
5	6.020	6.14 C:\Data	base\NISTO8.1			
		Benzene,	2-ethyl-1,4-dimethyl-	14714	001758-88-9	93
		Benzene,	1-methyl-2-(1-methylethyl	14737	000527-84-4	92
] =				
	2	Benzene,	1-ethy1-2,3-dimethy1-	14702	000933-98-2	91
6	6.082	1.99 C:\Data	base\NIS711 L			
		Benzene,	4-ethyl=1.2-dimethyl=	14888	000934-80-5	87
		o=Cymene	terite enterings	14811	000527-84-4	86
		Benzene,	2-ethyl-1,4-dimethyl-	14876	001758-88-9	60
7	£ 120	7 49 0-10-1-1				
	0.120	7.46 C:\Data	base\NISTU8.L			
		Benzene,	2-ethyl-1,4-dimethyl-	14712	001758-88-9	91
		Banzona	1-mothul_2_/1_mothul_	14710	000934-80-5	91
)-	r-meenAr-s-ir-meenArecuAt	14/3/	000551-84-4	91
	6.000					
0	0.200	22.63 C:\Data	base\NISTO8.L			
	4	Undecane		27916	001120-21-4	93
		Undecane		2/913	001120-21-4	92
				51273	vv1120-21-4	10
9	6.678	2.62 C:\Data	base\NIST08.L			
		Benzene,	1-ethyl-3, S-dimethyl-	14705	000934-74-7	92
		Benzene,	1-methyl-2-(1-methylethyl	14737	000527-84-4	91
) -				
		Senzene,	1-ethyl-2,3-dimethyl-	14708	000933-98-2	86
10	6,763	2.54 C:\Data	DASE NISTOR L		ý.	
100		Benzena	1.2.4.5-totramothul-	14504	000005-03	0.4
				*****	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	23

		Benzene, 1,2,4,5-tetramethyl- Benzere, 1,2,4,5-tetramethyl-	14688 14693	000095-93-2 000095-93-2	94 93
11	6.912	0.71 C:\Database\MIS711.1 Naghthalete, deckhydro-2-methyl-	25447	002958-76-1	60
		Eyclodecene, 1-methyl- Nephthalene, decahydro-2-methyl-	25420 25445	066633-38-3 002958-76-1	55 50
12	7.170	2.14 C:\Database\N1ST08.L Benzene, 1,3-diethyl-5-methyl-	22455	002050-24-0	90
		Benzene, 1-methyl-2-12-propenyl)- Benzene, 1-methyl-4-11-methylpropy 11-	13931 22450	001597-04-8 001595-16-0	60 42
13	7.381	<pre>4.54 C:\Database\WISTOF.1 Benzene, 1-methyl=4-(2-propenyl)- Benzene, (1-methyl=1-propenyl)-, (2)-</pre>	13929 13934	003333-13-9 000761-99-7	90 60
		Benzene, 1-methyl-2-(2-propenyl)-	13931	001587-04-8	60
14	8.177	5.79 C:\Database\NISCUB.L Maphthalene	11815	000091-20-3	95
		Azulene 18-Indene, 1-methylene-	11808	000275-51-4 002471-84-3	94 93
15	1.311	0.27 C:\Database\WISTI1.L			
		A2Ulebe Nachthalana	11935	000275-51-4	35
		Benzene, 1,3-dimethyl-5-(1-methyle thyl)-	22830	000091-20-3 004706-90-5	30 30
16	8.411	1.21 C:\Database\NIS711.L IH-Indene, 2,3-dihydro-1,2-dimethy 1-	21646	017057-82-8	42
		Benzene, 1-ethyl-4-(1-methylethyl) Benzene, (3-methyl-2-butenyl)-	22810 21631	DD4218-48-8 DD4489-84-3	38 38
17	9.338	0.59 C:\Database\WIST11.L	22/12	AI/112 12 0	
		Bicyclo(4.2.1)nons-2.4,7-triene, J -ethyl-	\$1951	1000164-42-	5a 6 41
		1E-Imidazole, 4,5-dihydro-2-phenyl	22235	000936-49-2	35
18	10.946	1.67 C:\Database\NIS708.L			
		Naphthalene, 1-methyl-	18987	000090-12-0	96
		Bicyclo]4.4.1]undeca-1,3,5,7,9-pen taese	18999	002443-46-1	91
19	11.398	0.42 C:\Database\SISTOB.L			
		Saphthalene, 2-rethyl=	18992	000091-57-6	91
		Benzocyclobeptatriece	18989 18985	000090+12-0 000264-09-5	86
20	13.252	0.78 C:\Database\NISTO8.L 5-Octadecere. (R)=	COSEP	007254-21-5	01
		9-Octadecene, (E)=	99559	007206-21-3	87
		1-Tridecene	46093	002437-56-1	68
21	16.657	2.04 C:\Database\N1St08.L			
		<pre>rhenol, 2,5-bis(1,1-dimethylethyl) Phanol, 2,5-bis(1,1-dimethylethyl)</pre>	63983	005875-45-6	95
		Phenol, 2,4-bis(1,1-dimethylethyl)	63985	000096-76-6	90
22	18.408	1.33 C:\Database\NISTOF.1			
		1-Hexadepene	73199	000629-73-2	98
		L-Hendelderig	19198	000629-73-2	96
		 meRemembrielting 	24103	000103-33-3	30

23	18.585	0.33 C:\Database\NIST08.L			
		Hexadecane	79882	000544-76-3 95	
		Hexadecane	79880	000544-76-3 91	
		Heptacosane	187748	000593-49-7 87	
24	23,105	1.35 Ct\Database\NISTOR L			
		1-Octadecane	DOFES	000110 00 0 00	
		Trifluoroscotovy bayadesana	39330	000112-86-9 93	
		1-Nonadecone	103912	006222-03-3 94	
		1-wonadecene	110431	018432-43-5 94	
25	24.147	0.72 C:\Database\NIST11.L			
		Phytol	141396	000150-86-7 68	
		Bicyclo[3.1.1]heptane, 2,6,6-trime	17013	006876-13-7 60	6
		thyl-, (1.alpha., 2.beta., 5.alpha.)			
		(-)-trans-Pinane	16859	033626-25-4 60	0
26	20.000				
20	20.805	0.59 C:\Database\NIST11.L			
		n-Hexadecanoic acid	107547	000057-10-3 47	
		1-Decanol, 2-hexyl-	95994	002425-77-6 38	
		Octatriacontyl pentafluoropropiona	242842	1000351-89-1 3	8
		te			
27	27 357	1 11 C. Databaro WICEAR I			
	211997	Trifluorosostavu baudaasa	1 (1010		
		netraceconel_1	103912	006222-03-3 95	
		n-recracosano1-1	174227	000506-51-4 94	
		1-HepCacosano1	194343	002004-39-9 94	
28	27,717	0.65 C:\Database\NIST11.1			
		1=Ethanone, 1=[4-acety]=2.5-dimeth	140792	1000350-21-8 4	7
		vl=1-(8-minolinul)=1#-oursol-2-ul	143/02	1000220-51-0 4	11
]-			
		Propanoic acid, 3-(3,4-dihydro-6,7	149352	299923-04-9 43	
		-dimethoxy=3,3-dimethyl=1-isomino	112325	200000 01-0 10	· .
		linvlaminol-			
		Indazol-4-one, 3,6,6-trimethyl=1-n	149516	1000310-86-5 4	2
		hthalazin-1-y1-1, 5, 6, 7-tetrahydro-		1000510 00 5 1	~
29	29.445	0.08 C:\Database\NIST11.L			
		Nonahexacontanoic acid	243830	040710-32-5 81	
		Sulfurous acid, octadecyl 2-propyl	200449	1000309-12-7 7	12
		ester			
		1-Dodecanol, 2-octy1-	143260	005333-42-6 53	1
30	30 349	0.24 C+\Database\NTCm11 T			
24	201935	Vica C: (Database (MISTILL)			
		Detriagentul hestaflurushata	223132	1000351-75=1 4	6
		Dotriaconcyl neptatluorobutyrate	242399	1000351-84-2 4	6
		fricosyl neptarluorobutyrate	238204	1000351-83-4 4	6
31	31.219	0.77 C:\Database\NISTOB.L		12	
		Dotriacontyl pentafluoropropionate	218181	1000351-81-4	17
		Octacosvl trifluoroacetate	212202	1000351-24-0 0	11
		Dotriacontyl trifluoroacetate	216724	1000351-74-9 5	1
			210134	1000331-73-4 5	71

okoh METHOD.M Sat Aug 16 20:48:32 2014

Area Percent Report

Dat	a Path	: C:\r	sdche	m/1/m	eth	od	is lokoh ME	THOD.N'		
Dat	ā File	: KOLA	MOLE	PLANT	.D					
Acg On		: 15 Aug 2014 23:45								
Ope	rator	: MEJI	DA/AC	HEM DI ANT						
Mie	hre	. 10546	11/1/10	2.0000.0	ſ.,					
h1s	Vial		Same	a Not		a.	ort 1			
As.J	1101		Sanhi	le nui			er: r			
Int	egratio	on Para	anete:	rs: ev	ent	3.	e			
Int	egrato	r: Cher	Stati	ion						
Met	hod	: C:\s	nsdche	1/1/0	et)	100	is\okoh Mi	ETHOD.M		
Tit	le	8								
Sig	nal	: TI(: KOI	ANOLS	S PI	AN	T.D\data	.ns		
peak	8.7.	first	лах	last	23	c	peak	corr.	corr.	1 of
1	nin	scan	scan	scan	T	1	height	area	1 max.	total
1	5.490	58	71	73	PV	10	98731	2663532	8.93%	2.0208
2	5.541	73	79	85	W	3	140932	5140027	17.23%	3.8998
3	5.614	85	92	94	W	3	268878	6218672	20.84%	4.7178
4	5.656	94	99	144	W	6	345319	24566680	82.35%	18,6351
5	6.022	144	163	170	PV	3	147603	8099039	27.158	6.1448
6	6.082	170	174	176	w	4	139599	2620850	8,78%	1,988%
7	6.131	176	192	195	W	3	191789	9866464	33,078	7.4841
8	6.268	195	206	264	W	2	369825	29833625	100,80%	22.6314
9	6,677	264	278	286	W	7	62203	3449597	11.56%	2.6175
10	6.764	286	293	311	W	2	78461	3344384	11.21%	2.5374
11	6,915	311	319	334	PV	2	21065	936203	3,145	0 7164
12	7.170	348	364	385	PV	9	42365	2816487	9.441	2,1368
13	7.382	385	401	436	PV	9	68889	5988489	20.075	4.5438
14	8.178	525	540	571	PV	4	86350	7638798	25.60%	5.7945
15	8.374	571	574	576	W	3	25679	361861	1.218	0.2741
16	8.413	576	581	689	vv	,	27379	1592670	5 749	1 2085
17	9,336	717	763	764	RV	3	12126	771362	2 509	0 5851
18	10,946	10.07	1024	1067	VV	2	34506	2207160	7 408	1 6749
19	11,400	1086	1103	1121	RU	3	12440	555978	1.965	0 4229
20	13.254	1412	1427	1448	BV	4	26343	1033245	3.461	0.784%
21	16.657	2000	2022	2053	RU	2	66915	2693192	8 601	2 0358
22	18 403	2305	2328	2344	BIL	2	52910	1257075	6 009	1 2248
23	18 582	2344	2350	2377	1UI	6	12222	1131313	1 450	1.3344
24	23 106	3120	2140	1165	BU	1	15565	1270057	5 059	1 3509
25	24.148	3293	3331	3347	87	2	25395	946312	3.17%	0.718%
26	26 863	22.01	2000	- 2555	100	-	12000			
20	20.003	3/91	2000	3023	99	1	1/692	180014	Z.015	0.592%
20	27.300	3079	3692	3903	VV	5	44937	1458176	4.898	1.1068
20	21.120	1930	3955	3968	BV	0	20228	856613	2.878	0.650%
29	29.448	1242	4257	4261	EN	0	5277	103025	0.358	0.078%
20	20.231	1222	1910	9922	ri	0	3812	318200	1.078	0.2411
31	31.218	4551	4567	4577	PV	5	31034	1009858	3.38%	0.766%

Sun of corrected areas: 131828761

okoh METHOD.M Sat Aug 16 20:52:07 2014

Intl. J. Microbiol. Res., 6 (2): 100-107, 2015

DISCUSSION AND CONCLUSION

In recent years, the search for phytochemicals possessing antimicrobial have been on the rise due to their potential use in the therapy of various chronic and infectious diseases. Phytochemical screening of Senna *alata* reveals the presence of alkaloids, saponins, tannins, phlobatannins, anthraquinones, steroidal nucleus, cardenolides, steroidal ring and flavonoids. These phytochemicals have been shown to possess several biological activities including antimicrobial activity [16]. The flavonoids are mostly recognized for their antioxidant activity while their role in modifying the body reaction to allergens, viruses and carcinogens has also been reported [17,18]. According to Jiksika et al. [18], alkaloids are organic compounds that contain nitrogen having sedative and analgesic properties. In another studies, the toxigenic effect of this phytochemical was reported [19]. The fact that ethanolic extract of Senna alata Linn was more efficacious than other tested extract is not unexpected as Obi and Onuohia [19] have earlier reported ethanol as the solvent of choice when extracting plant active ingredients. Their findings however negate that which documented normal hexane as the best for extracting active ingredients of plant [20, 21]. These two studies buttressed that, solubilization of required active ingredients in solvent may probably be the major factors influencing the selection of the most appropriate solvent of choice [22-23]. The MIC and MFC results showed that the extracts exhibited definite fungistatic and fungicidal activity. On comparison of the mass spectra of the constituents with the NIST library, the 78phytoconstituents were characterized and identified, which are listed with their retention time (RT), molecular formula, molecular weight (MW) and concentration (%) in the scanned material above. According to the peak area, the major phyto constituents present in Senna alata were xylene, alcohol, aldehydes, alkanes, alkenes, fatty alcohol, acetic acid, ketones and ester. It can be inferred that Senna alata Linn posseses good antifungal activity and such activities might be ascribed to the presence of the phytochemicals and some of the chemical constituents.

REFERENCES

- De Smet, P.A.G., 2002. Herbal remedies. New Engl. J. Med., 347: 2046-2056.
- Ibrahim, D. and H. Osman, 1995. Antimicrobial Activity of Cassia alata from Malaysia. J. ethnopharmacol., 45(3): 151-156.
- 3. Balboa, J.G. and C.Y.L. Sylianco, 1992. Antigenotoxic effects of drug preparations Akapulko and Ampalaya. Philippine Journal of Science, 121(4): 399.
- 4. Serrame, E. and C.Y.L. Sylianco, 1995. Anti-tumor promoting activity of decoctions and expressed juices from Philippine medicinal plants. Philippine Journal of Science, 124(3): 275-281.
- Panichayupakaranant, P. and S. Kaewsuwan, 2004. Bioassay guided isolation of antioxidant constituent from Cassia alataL. leaves.Songklanakarin J. Sci Tech., 26: 103-107.
- Villasenor, I.M., A.P. Caulas, M.P. Pascua, M.N. Sabando and L.A. Soliven, 2002. Bioactivity studies on Cassia alata Linn. Leaf extracts. Phytother.Res., 6(1): 893-896.
- Palanichamy, S. and S. Nagarajan, 1990a. Analgesic activity of Cassia alata leaf extract and kaempferol 3-Osophoroside. J. Ethnopharmacol., 29: 73-78.
- Somchit, M.N., I. Reezal, I. Elysha Nur and A.R. Mutalib, 2003. In vitro antimicrobial activity of ethanol and water extracts of Cassia alata. J. Ethnopharmacol., 84: 1-4.
- 9. Palanichamy, S. and S. Nagarajan, 1990b. Antifungal activity of Cassia alata leaf extract. J. Ethnopharmacol., 29(3): 337-340.
- Damodaran, S. and S. Venkataraman, 1994. A study on the therapeutic efficacy of Cassia alata Linn. Leaf extract against Pityriasis versicolor.J. Ethnopharmacol., 42: 19-23
- Emmanuel, N.A., M. Moudachirou and J.A. Akakpo, 2003. Treatment of bovine dermatophitosis with Sennaalata, Lantana camaraand Mitracarpus scaber leaf extracts. J. Ethanopharmacol., 86 (2-3): 167-171.
- Effariim, K.D., O.A. Sodipo and T.W. Jacks,1999. Antihepatotoxic activity of aqueous extracts of Cassia alata(Linn) leaves against carbon tetrachloride induced liver damage in rats. Pakistan Veterinary Journal., 19: 111-114.
- Palanichamy, S., S. Nagarajan and M. Devasagayam, 1988. Effect of Cassia alata leaf extract on hyperglycemic rats. J. Ethnopharmacol., 22: 81-90.

- Crockett, C.O., F. Guede-Guina, D. Pugh, M. Vangah-Manda, T.J. Robinson, J.O. Olubadewo and R.F. Ochillao, 1992. Cassia alata and the preclinical search for therapeutic agents for the treatment of opportunistic infections in AIDS patients.Cell. Mol. Biol., 38: 799-803.
- Sofowora, A., 1993. Medical plant Traditional Medicine in Africa 2nd Edition, Spectrum Books Ibadan Nigeria, pp: 134-136.
- Balch, J.F. and P.A. Balch, 2000. Prescription for Nutritional Healing. New York: A very, Penguin Putnam Inc., pp: 267-270.
- Ekam, V.S. and P.E. Ebong, 2007. Serum protein and enzymes levels in rats following administration ofantioxidant vitamins during caffeinated and non caffeinated paracetamol induced hepatotoxicity. Nigeria J. Physiol. Sci., 22(1): 65-68.
- Jisika, M., H. Ohigashi, H. Nogaka, T. Tada and M. Hirota, 1992. Bitter steroid glycosides, Vernon sides A1, A2 and A3 and related B1 from the possible medicinal plant *Vernonia amygdalina* used by wild Chimp. Tetrahedron, 48: 625-630.
- Obi, V.I. and C. Onuoha, 2000. Extraction and characterization methods of plants and plant products. In:Biological and Agricultural technique. Ogbuile, J.N. and Ojiako, O.J. Ed. Websmedia Publications, Owerri, pp: 271-286.
- Ijeh, I.I., O.D. Omodamiro and I.J. Nwanna, 2005. Antimicrobial effect of aqueous and ethanolic fraction of two Species: Ocimum gratissimum and Xylopia gethiopica. Afr. J. Biotechnol., 4(9): 953-956.
- Junaid, S.A., O.A. Olabode, F.C. Onwuuri, A.E.J. Okwori and S.E. Agina, 2006. The Antimicrobial Properties of Ocimum gratissum Extracts on Some Selected Bacterial Gastrointenstinal Isolates. Afr. J. Of Biotechnology, 5(22): 2315-2321.
- Parekh, J. and S. Chanda, 2007. In vitro screening of antibacterial activity of aqueous and alcoholic extracts of various Indian plant species against selected pathogens from Enterobacteriaceae. African Journal of Microbiology Research, 1(6): 92-99.
- 23. Agu, G.C. and B.T. Thomas, 2012. Antibacterial Activities of Ethanol and Aqueous Extracts of Five Nigerian Medicinal Plants on Some Wound Pathogens. Nature and Science, 10(2): 78-84.