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Abstract: Scheduling IoT objects on to the loud is a recent research topic under focus. In this paper, the
Generic Round Robin scheduling has been studied under the aspect of dynamically varying quantum size. A
number of variants are proposed for dynamically varying the time quantum. A simulator has been developed
for recording the observations of the average waiting time of the process by dynamically changing the time
quantum based on the burst time of the process in the Ready Queue (RQ) or Completed Queue (CQ). The
observations are carried out for both the scenarios of zero arrival time and process arriving at different times.
Among the proposed variants, the variant in which the time quantum is varied by employing the sum of the
burst time of the process in the Ready Queue and the variant in which the time quantum is varied by adding
up the maximum of burst time of process in ready queue tends to be nearly 40% more efficient when compared
to static time quantum Round Robin scheduling. Other variants also produce considerable improvement when
compared to static time quantum Round Robin scheduling. This paper would promote lot of research
enhancements in the area of Scheduling IoT on to cloud.
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INTRODUCTION Context switching is an important inevitable act in a

The need for efficient cloudallocation turns out to be computer system. Whenever a task requires an I/O
the most important factor in today’s IoT era. Especially operation to be performed another task, gets hold of CPU
with the advent of multitasking environment, the and save the context and could be resumed back later. It
allocation of CPU to a process requires more careful is to be noted that, during each scheduling decision, there
attention, than in a uni-task, uni-user architecture. A good is an occurrence of context switch, which means, that
scheduling algorithm would assure unbiased fairness as current process running on the processor will be pre-
well as prevent starvation or stagnation of process. empted and put in a ready queue and the next desired

Need for an efficient scheduling mechanism in a process will be allocated the CPU. These context switches
multiprogrammed environment is very high, since the are a pure overhead, since the processor remains idle
implementation of an operating system is itself, through during the context switching, thereby reducing the CPU
one or more processes. The need for multiprogramming is utilization factor which would be an undesired outcome of
high. Also the need to complete the interrupt or any of the a good scheduling algorithm.
I/O operation within a stipulated time is very high. First Come First Served (FCFS) scheduling algorithm,
Designing a novel process scheduling algorithm should which works under the scheme: the process that requests
be governed by the following operational criteria of CPU first is allocated first. The compelling advantage of
maximizing the CPU utilization and throughput and FCFS, is its simplicity, where the dispatching of processes
minimizing the turnaround time, waiting time and response are carried over, according to the arrival time of process
time [1]. with  respect  to  the  number  of  context   switches,  FCFS

processor especially in case of several tasks present in a
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algorithm will exhibit minimal number of context switches, process and process in the ready queue. The solution
of O(1), when the number of processes to be scheduled is tends to be more promising, when compared to the
relatively less. The phenomenon does not hold good traditional RRA, with respect to the factor of Average
incase of multi-process, thereby reporting bad waiting time of the process in the ready queue.
responsiveness. Since FCFS is non-preemptive, once a
process acquires a CPU it runs to completion. This may Literature Background: RRA is one of the simplest CPU
not be suitable in a real-time scenario. This is caused scheduling algorithms, which assigns ‘timespan’ known
because of the fact that long process may disrupt, short as time slice to each of the process in the circular queue,
process to be completed well before [2, 3]. thereby handling all the processes without priority. RRA

As  against  in  priority  scheduling,  CPU is assigned ensures that each process that is required to complete a
to  process based on the externally associated priority job gets ample amount of run-time and hence preventing
with the heuristic that the process with highest priority is starvation of process [1]. 
‘run’ first.  Here  the  problem arises in choosing the Consider a user of the computer system,
priorities. It is to benoted that the entire functionality simultaneously starts four applications, namely mp3
associated  with  the  process is tobe known in advance, player, game application, word processor and a
to assign priority to a process. A major problem spreadsheet application. All the four applications are
encountered  here  is starvation, which would be solved loaded into the main memory, as processes and each of
by aging [1]. the process is allocated the processor without any

Shortest  Job  First  (SJF)  scheduling  tends to priority. The sharing of resources between processes is
provide an optimal (minimal) average waiting time. The handled by employing the RRA. The RRA tends to
major problem here is that, a precise knowledge about perform well because; each application receives a certain
how long a process will run, is to be gained in advance, time quantum, per processor cycle. Processor cycle is the
but this information is usually unavailable and amount of time; it takes to manage each process running
unpredictable [4][5]. Moreover SJF, exhibits O(n) one time [9].
scheduling overhead, where ‘n’ is number of process in With the example quoted above the applications
ready queue. provide a short cycle for the processor and more time

Round RobinAlgorithm (RRA), which is the main could equally  be  allotted  to each of these four
concern of this paper, is simple, fair and most widely used processes,  thereby  making  them  appear to perform
algorithm especially for time-sharing systems. RR is better  with  a end-users point of view. If RR strategy is
similar to FCFS, but the difference lies in pre-emption. A not employed, the application which acquires the
small unit of time quantum, ‘Q’, is defined and short-term processor  first,  would monopolize the processor [9],
scheduler goes round the process kept in a circular queue, there by providing a way for starvation of other
allocating CPU to each process a time interval of one processes. Hence the employment of RR strategy helps to
quantum. Wherever a new process arrives to be keep track with end user and efficiently tackle all the four
scheduled, it is placed at the tail-end of the ready queue. processes. RR strategy can also be applied for any real-
CPU scheduler picks the first process from the circular time process scheduling and packet scheduling in
queue, sets the timer to interrupt after a single time computer networks.
quantum and then dispatches the process [6]. If the If the size of the tasks varies in accordance with time,
process, still run, even after the expiry of the time then the RR scheduling strategy would not be desirable
quantum, preemption of CPU occurs and the remaining to apply. The process that produces larger jobs would be
processes added up at the tail of circular queue. If the favored as against other processes. In such cases of
execution of process is finished well before the end of dynamically varying task/ job fair queuing would be
time-quantum, the process will voluntarily release the CPU preferred [11].
to the next process in the ready queue. The performance RR strategy would be an efficient promising
of RRA is vested upon, choosing the size of time quantum alternative as against FCFS queuing in best effort packet
[7]. This paper presents a solution to the problem of switching and other statistical multiplexing techniques in
choosing the time quantum, by dynamically varying the wireless/wired networks. A multiplexer, which provides
time-quantum based upon the burst time of the completed RR scheduling as a dedicated queue for every data flow,
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identified by address (source address and destination in the completed queue, if the time quantum is varied
address). The algorithm allows every data packet in the dynamically, based upon the processes in the ready
queue, to take up turns in the transferring packets in a queue, the static time quantum is adopted during the first
shared channel in a periodically repeated order. The cycle of scheduling. From the second cycle, the time
scheduling tends to be non-conserving meaning that if quantum is dynamically changed, according to the
one flow is out of packets; the next data flow will take up variants of burst time of process available in the ready
this place [10]. Choosing the time quantum of a RR queue. The variants are shown below:
scheduling is very important. If the time quantum is too
small, the number of context switches increases Q: Static Time Quantum
tremendously, thereby lowering the efficiency of the MQ: Modified Time Quantum
processor [7]. It is to be noted that the context switch is BT: Burst Time
a pure overhead, since no useful work is getting done CQ: Completed Queue
when the processes fluctuated between CPU. RQ: Ready Queue

RRA tend to give good responsiveness but worst
average waiting time and turnaround time [12] [13]. RRA 1.
have a low-scheduling overhead O(1) complexity, which
means that scheduling the following process, takes up a
constant time. Since performance of RR is largely 2.
dependent upon the time quantum, in this paper, efforts
has been made to study the performance of the algorithm 3.
by varying the time quantum.

4.
Proposed Methodology: As discussed in the previous
section, emphasis is to be laid in choosing the time
quantum, for the RR scheduling to yield fair results. So 5.
the proposed methods focuses on dynamically varying
this time quantum based upon the worst time of the 6.
processes in the Ready Queue (RQ) or Completed Queue
(CQ) (The processes that finishes the execution in CPU 7.
are queued up in a queue called completed queue) , This
new time quantum determined by the burst time of 8.
processes in the ready queue or completed queue yields
a real optimal value because time quantum variation is
based upon the real burst time. 9.

Dynamically varying the time quantum based upon
the burst time of the process in the completed queue or
ready queue: The generic algorithm for the variants is shown

During the first cycle (cycle represents allocating the below. It is to be noted that the algorithm works on
static time quantum to all the processes once) of iteratively, until all the processes in the ready queue gets
scheduling, the static time quantum is adopted. At the executed.
end of first cycle, if any of the processes completes its The same variants are also applicable for processes
execution, it is pushed on to a queue called completed in the ready queue.
queue. If no process completes its execution in the first
cycle, the next cycle is carried out with the same static Experimental Simulation: The proposed algorithmic
time quantum. The same is followed until a process arrives variants were evaluated to meet the primary scheduling
at the completed queue. Once the process arrives at the criteria: to minimize the average waiting time. T o evaluate
completed queue, the quantum is changed according to the proposed variants, four different scenarios are
the variance of the burst time of the processes available studied. The scenarios are as follows:
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Table 1: Algorithm: Dynamic Time Quantum Variation (DTQV)
n:Number of process to be executed
Pi: ith process
CQ: Completed Queue
RQ: Ready Queue
AT:Arrival Time
FT:Finish Time
ST:Start Time
T,TmpQ=Time
Input: n, Pi, AT(Pi)
Output :Average Waiting TimeTime Quantum is varied dynamically based
on burst time of process in CQ/RQ
Initialization: ST(Pi)=WT(Pi)=0,T,TmpQ,
fori is 1 to n
Begin

Get BT(Pi);
GetAT(Pi);

FT(Pi)=AT(Pi);
End
Get(Q);
while(RQ<>NULL)
begin
for I is 1 to n

begin
if BT(Pi)>=Q
then

ST(Pi)=T;
BT(Pi)=BT(Pi)-Q;
T=T+Q;
WT(Pi)=ST(Pi)-FT(Pi);
FT(Pi)=T;

Else
ST(Pi)=T;
BT(Pi)=0;
T=T+Q;

Tmp Q=Q-BT(Pi);
T=T-TmpQ;
Wt(Pi)=ST(Pi)-FT(Pi);
FT(Pi)=T;
Enqueue(CQ,Pi);
Dequeue(RQ,Pi);
End If
End
Q=MQ
End

Arrival time of all the process is equal to zero and the
time quantum is varied dynamically, based upon
burst time of process in completed queue (CQ)
Process arrival at different arrival times and the time Case: 2
quantum is varied dynamically, based upon burst
time of process in completed queue (CQ)
Arrival time of all the process is equal to zero and the
time quantum is varied dynamically, based upon
burst time of process in ready queue (RQ)
Process arrival at different arrival times and the time
quantum is varied dynamically, based upon burst
time of process in ready queue (RQ)

Scenario 1 and Scenario 3 are validated for three
different cases:

Case:A
Process Burst Time: Small
Time Quantum: Small

Assume six processes arrive at time T=0. The burst
time of the processes are assumed to be P =1, P =3, P =2,1 2 3

P =5, P =7 and P =6. The static time quantum is assumed4 5 6

to be 3. (all the time constraints are in milliseconds (ms))

Case: B
Process Burst Time: Large
Time Quantum: Small

Assume six processes arrive at time T=0. The burst
time of the processes are assumed to be P =200, P =800,1 2

P =400, P =500, P =600 and P =1000. The static time3 4 5 6

quantum is assumed to be 3. 

Case: C
Process Burst Time: Large
Time Quantum: Large 

Assume six processes arrive at time T=0. The burst
time of the processes are assumed to be P =200, P =800,1 2

P =400, P =500, P =600 and P =1000. The static time3 4 5 6

quantum is assumed to be 30. 

Scenario 2 and Scenario 4 are validated for five
different cases:

Case: 1
Process Burst Time: Small
Time Quantum: Small
Process Arrival Time: Small

Assume six processes, P , P , P , P , P  and P  arrive1 2 3 4 5 6

at time T=0, 1, 3, 6, 7 and 9 respectively. The burst time of
the processes are assumed to be P =1, P =3, P =2, P =5,1 2 3 4

P =7 and P =6. The static time quantum is assumed to be5 6

3.

Process Burst Time: Large
Time Quantum: Small
Process Arrival Time: Small

Assume six processes, P , P , P , P , P  and P  arrive1 2 3 4 5 6

at time T=0, 1, 3, 6, 7 and 9 respectively. The burst time of
the processes are assumed to be P =200, P =800, P =400,1 2 3

P =500, P =600 and P =1000. The static time quantum is4 5 6

assumed to be 3.
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Case: 3 generic RRA. Simulation results show that the RRA with
Process Burst Time: Large dynamically varying quantum (based upon burst time of
Time Quantum: Small process in RQ and CQ) is 3.921% more efficient when
Process Arrival Time: Large compared to static time quantum RRA. The same is

Assume six processes, P , P , P , P , P  and P  arrive inferred from Fig. 1.1 2 3 4 5 6

at time T=50, 70, 100, 120, 128 and 300 respectively. The
burst time of the processes are assumed to be P =200, For Case B:1

P =800, P =400, P =500, P =600 and P =1000. The static The  variant  1  and 3, applied on process chosen for2 3 4 5 6

time quantum is assumed to be 3. m Ready Queue, yields very good result, nearly 42.2%

Case: 4 RRA. The other variants tend to be 25%-28% when
Process Burst Time: Large compared to static time quantum RRA. The same is
Time Quantum: Large inferred from Fig. 2.
Process Arrival Time: Small

Assume six processes, P , P , P , P , P  and P  arrive For Case C:1 2 3 4 5 6

at time T=0, 1, 3, 6, 7 and 9 respectively. The burst time of The variant 1 and 3, applied on process chosen for m
the processes are assumed to be P =200, P =800, P =400, Ready Queue, yields very good result, nearly 38% more1 2 3

P =500, P =600 and P =1000. The static time quantum is efficient when compared to static time quantum RRA. The4 5 6

assumed to be 30. other variants tend to produce considerable

Case: 5 when compared to static time quantum RRA. The same is
Process Burst Time: Large inferred from Fig. 3.
Time Quantum: Large Process arrive at different arrival times and the time
Process Arrival Time: Large quantum is varied dynamically, based upon burst time of

Assume six processes, P , P , P , P , P  and P  arrive process in RQ/CQ 1 2 3 4 5 6

at time T=50, 70, 100, 120, 128 and 300 respectively. The The  percentage  of improvement of each of the
burst time of the processes are assumed to be P =200, variant when compared to traditional RRA, is shown in1

P =800, P =400, P =500, P =600 and P =1000. The static Table 3 (time quantum is varied dynamically based upon2 3 4 5 6

time quantum is assumed to be 30. burst time of process in CQ) and Table 4 (time quantum is

RESULTS AND DISCUSSION RQ).

Arrival time of all the process is equal to zero and the For Case 1:
time quantum is varied dynamically, based upon burst The average waiting time for all the variants tends to
time of process in CQ/ RQ: produce less average waiting time when compared to

A simulator was designed, to evaluate the cases A, generic RRA. Simulation results show that the RRA with
B and C. The performance of the variants is evaluated for dynamically varying quantum (based upon burst time of
each of the cases using the simulator based upon the process in RQ and CQ) is 8% more efficient when
factor of minimizing the average waiting time. The compared to static time quantum RRA. The same is
percentage of improvement of each of the variant when inferred from Fig. 4.
compared to traditional RRA, is shown in Table 1 (time
quantum is varied dynamically based upon burst time of For Case 2:
process in CQ) and Table 2 (time quantum is varied The variant 1 and 3, applied on process chosen from
dynamically based upon burst time of process in RQ). Ready Queue, yields very good result, nearly 42.2% more

For Case A: The other variants tend to be 8.7%-27.4% when compared
The average waiting time for all the variants tends to to  static  time quantum RRA. The same is inferred from

produce less average waiting time when compared to Fig. 5.

more efficient when compared to static time quantum

improvements in the reduction of average waiting time,

varied dynamically based upon burst time of process in

efficient  when  compared  to static time quantum RRA.
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Fig. 1: Waiting time for Case A, when the time quantum is varied dynamically based on the burst time of the process in
RQ and CQ

Fig. 2: Waiting time for Case B, when the time quantum is varied dynamically based on the burst time of the process in
RQ and CQ

Fig. 3: Waiting time for Case C, when the time quantum is varied dynamically based on the burst time of the process in
RQ and CQ
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Fig. 4: Waiting time for Case 1, when the time quantum is varied dynamically based on the burst time of the process in
RQ and CQ

Fig. 5: Waiting time for Case 2, when the time quantum is varied dynamically based on the burst time of the process in
RQ and CQ

Fig. 6: Waiting time for Case 3, when the time quantum is varied dynamically based on the burst time of the process in
RQ and CQ
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Fig. 7: Waiting time for Case 4, when the time quantum is varied dynamically based on the burst time of the process in
RQ and CQ

Fig. 8: Waiting time for Case 5, when the time quantum is varied dynamically based on the burst time of the process in
RQ and CQ

For Case 3: For Case 5:
The variant 1 and 3, applied on process chosen from The variant 1 and 3, applied on process chosen from

Ready Queue, yields very good result, nearly 45% more Ready Queue, yields very good result, nearly 40.56% more
efficient when compared to static time quantum RRA. The efficient  when  compared  to static time quantum RRA.
other variants tend to be 9.3%-29.1% when compared to The other variants tend to be 6.8%-23.8% when compared
static  time  quantum  RRA.  The  same  is inferred from to  static  time quantum RRA. The same is inferred from
Fig. 6. Fig. 8.

For Case 4: Conclusion and Future Work: In this paper, the generic
The variant 1 and 3, applied on process chosen from Round Robin scheduling has been studied under the

Ready Queue, yields very good result, nearly 38.1% more aspect of dynamically varying quantum size.
efficient  when  compared  to static time quantum RRA. Observations are made for calculating the average waiting
The other variants tend to be 6.4%-22.4% when compared time of the process by dynamically changing the time
to  static  time quantum RRA. The same is inferred from quantum based on the burst time of the process in the
Fig. 7. ready queue or completed queue. The observations are
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carried out for both the scenarios of zero arrival time and 6. Back, D.S., K. Pyun, S.M. Lee, J. Cho and N. Kim,
process arriving at different times. A number of variants 2007. Hierarchical deficit Round-Roubin scheduling
are proposed for dynamically varying the time quantum. algorithm  for  a  high   level   fair  service,
Among the proposed variants, the variant in which the Proceedings of the International Symposium in
time quantum is varied by replacing the sum of the burst Information Technology Convergence, Nov. 23-24,
time of the process in the ready queue and the variant in IEEE  Computer  Society,  Washington  D.C., USA,
which the time quantum is varied by adding up the pp: 115-119.
maximum of burst time of process in ready queue tends to 7. Rami J. Matarneh, 2009. “Self Adjustment Time
be nearly 40% more efficient when compared to static time Quantum in Round Robin Algorithm depending on
quantum  Round  Robin scheduling. Other variants also burst time of the now-running processes”, American
produce considerable improvement when compared to Journal of Applied Sciences, 6(10): 1831-1837.
static time quantum Round Robin scheduling. 8. Helmy, T. and A. Dekdouk, 2007. Burst Round Robin

As a future work, heuristic techniques may be applied as a Proportional Share Scheduling Algorithm, IEEE
to dynamically choose the variant for dynamically varying GCC, KingFahed University. 
the  time  quantum specific to an application. Extensive 9. http://ww.wisegeek.com/what-is-round-robin-
research can also be carried out to apply the modified scheduling.htm.
Round Robin algorithm for real-time scheduling 10. h ttp : / /en .wikipedia .org /wik i /Round-Robin-
applications. Scheduling#Process_Scheduling.
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