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A Mathematical Modeling of Prey-Predator Model with
Holling-Type II and Modified Leslie-Gower Schemes with Prey Refuge

Ahmed Buseri Ashine
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Abstract: A predator-prey system with Holling type II functional response and modified Leslie–Gower type
dynamics incorporating constant proportion of prey refuge compared by considering the model without prey
refuge is considered. In both cases condition for local asymptotic stability of positive equilibrium point of the
system is discussed by non-dimensionalize the system and global asymptotic stability is proved by defining
appropriate Dulac function. Numerical simulations are also carried out to verify the analytical results.
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INTRODUCTION m (0,1)  of  the   prey   can  take  refuge  to avoid

The dynamic relationships between species and their predation.  Let   X   (t)   and  Y (t)  represent  the
complex properties are at the heart of many ecological and population  of  the  prey  and  predator  species  at  any
biological processes [1]. As was pointed out by [2], mite time  t. The main feature of the model is that the
predator–prey interactions often exhibit spatial refugia interaction of species affects both populations. Terms
which afford the prey some degree of protection from representing logistic growth of the prey species in the
predation and reduce the chance of extinction due to absence of the predator are included in the prey
predation. In [2], Tapan Kumar Kar had considered a equations. The model has two non-linear autonomous
predator–prey model with Holling type II response ordinary differential equations describing how the
function and a prey refuge. The author obtained population  densities  of  the  two  species  would vary
conditions on persistent criteria and stability of the with time.
equilibria and limit cycle for the system. For more works Thus, the model under the assumption with Holling
on this direction, one could refer to [2-5] and the type II functional response and the modified Leslie-Gower
references cited therein. Such system has been type predator dynamics is given by:-
investigated by several researchers. In particular, the
boundedness of solutions and global stability of the
positive equilibrium points of the system has been
studied by [6]. Sufficient conditions for the existence and (1)
global attractivity of positive periodic solutions of the
model were discussed by [7].

Although many authors have considered the
dynamic behaviors of the modified Leslie–Gower model where all the parameters in the model assumes positive
[7-12] and predator–prey with a prey refuge [2-5,13], as far values and with initial value X(0) 0 and y(0) 0.
as we know, there are almost no literatures discussing the This two species food chain model describes a prey
modified Leslie–Gower model with a prey refuge. population  x  which  serves  as  food  for  a  predator  y.

The  Mathematical  Model:  The  model  considered  is only positive values. These parameters are defined as
based on the assumption that a constant proportion follows:

predation, this leaves (1-m)X of the prey available for

The model parameters r, s, K, k , k , c  and c  are assuming1 2 1 2
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r is per capita intrinsic growth rates for prey, s is
gives the maximal per-capita growth rate of predator, K is
the carrying capacity of the environment, k  (respectively,1

k ) measures the extent to which environment provides2

protection to prey x (respectively, to the predator y), c  is1

the maximum value which per capita reduction rate of prey
and c  is the crowding effect for the predator.2

The following non-dimensional state variables and
parameters are chosen.

The  system  (1)  takes  the following non-
dimensional form

(2)

Lemma 2.1: All the solutions (x(t),y(t)) of the system (2)
are nonnegative. That is x(t) 0 y(t) 0 for all t 0.

Lemma 2.2: All the solution (x(t),y(t)) of the system (2)
are bounded.

Proof: The first equation of (2) gives us

Therefore,  Hence, x(t) is always

bounded.
Similarly,

Therefore, we have ,

Hence, the solutions (x(t),y(t)) of the system (2) with
the given initial conditions are bounded. 

Nonnegative Equilibria: Obviously, (2) has three

boundary equilibria, E (0, 0), E  (1, 0) and .0 1

Besides these equilibrium points the system (2) has one
positive equilibrium points, say. 

is obtained by solving the following

simultaneous equation

One can easily see that x  satisfies the quadratic*

equation

Where,

Stability Analysis
Local Stability: The local asymptotical stability of each
equilibrium point is studied by computing the Jacobean
matrix and finding the eigenvalues evaluated at each
equilibrium point. For stability of the equilibrium points,
the real parts of the eigenvalues of the Jacobean matrix
must be negative.

Theorem 3.1.1: The trivial equilibrium E is unstable.0

Proof: At E (0,0), the Jacobean matrix becomes 0

Thus, the eigenvalues of this  matrix  are   =  1  and1

 = , both are positive, which shows that the trivial2

equilibrium is unstable.

Theorem 3.1.2: The equilibrium point E (1,0) is also1

unstable.

Proof: The Jacobean matrix becomes
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The eigenvalues are  = -1<0,  = >01 2

Thus the equilibrium point E1(1,0) is unstable saddle
point.

Theorem 3.1.3: The equilibrium point  as

locally asymptotically stable if .

Proof: At , the Jacobean matrix is

The eigenvalues of the matrix J(E ) are2

,

For E  to be locally asymptotically stable, we should2

have , This is true for .

Theorem  4.1.4:   The   dynamic   system   (2)   has
as locally asymptotically stable if

.

Proof: At , the Jacobean matrix takes the form

Thus,  if and only if

.

Hence,    the       equilibrium       point       E     is*

locally  asymptotically  stable  provided

.

Global Stability
Theorem 3.2.1: The system (2) does not admit any
periodic solution for .

Proof: Let  be solutions of the system (2).
Define Dulac function

Then

It is observed that Q<0 for m>1- . Therefore, by
Dulac criterion, the system (2) has no non-trivial periodic
solutions.

Lemma 3.2.1: If m>1-  then the local asymptotical
stability of the system (2) ensures its global asymptotical
stability around the unique positive interior equilibrium
point .

Section TWO
The Model Without Prey Refuge:

Consider when m = 0 that is, there is no prey refuge: 

Here it is assumed that all the preys are accessible to
the predator species, our mathematical model (1) becomes,

(3)

where all the parameters in the model are positive.
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The following non-dimensional state variables and It is observed that Q < 0 for >1. Therefore, by Dulac
parameters are chosen.

The  system  (3)  takes  the following non-
dimensional form

(4)

Equilibrium Points: We now study the existence of
equilibria of system (4). All possible equilibria are

(I) The trivial equilibrium E  (0, 0)0

(ii) Equilibrium in the absence of predator (y = 0) E  (1, 0)1

(iii) Equilibrium in the absence of prey (x= 0) 

(iii) The interior (positive) equilibrium  where x*

is the unique positive root of the quadratic equation
;

Where

Theorem: The system (4) does not admit any periodic
solution for >1.

Proof: Let (x(t), y(t)) be solutions of the system (3.2).
Define Dulac function

Then

criterion, the system (4) has no non-trivial periodic
solutions.

Numerical  Simulation:  In  this  section  we  will solve
the system equation (2) and (4) by using the in-built
ordinary differential equation solver MatLab function
ode45.

For solving system (2), we took the following
parametric values. .

For these  values  of  parameter,  we  simplify  the
existence and stability properties of the equilibrium for the
system.

For the given parametric values, it is found that the
coexistence equilibrium point exists for m > 0.5. Hence, in
our simulation we took the values of m in the range
0.5>m>1.

Fig. 1: Times series plot of prey and predator at m=0.55

Fig. 2: Time series plot of prey and predator at m=0.6.
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Fig. 3: Time series plot of prey and predator at m=0.8.

Fig. 4: Time series plot of prey and predator at m=0.95

For   the   system   equation   (4),   that   is   the
system  in  the  absence  of  prey  refuge,  we  have used Fig. 6: Time series plot of prey and predator at =0.04
the  following  parametric  values as fixed and the
parameter   as  a   control   parameter.   These   values
are . For these set of

parametric  values  the  coexistence equilibrium point
exists whenever <0.1. The coexistence equilibrium point
is locally asymptotically stable for <0.651234  and hence
unstable otherwise.

Figures 5-7 shows the stability of the coexistence
equilibrium point. That is; the solution, trajectory, of the
prey and predator species approaches to the coexistence
equilibrium point. 

A figure 8 shows the existence of a limit cycle,
periodic   solution.   Figure   9   also   shows  the
oscillatory nature of the predator prey system. Figure 10
represents the instability of the coexistence equilibrium
point.

Fig. 5: series plot of the prey and predator at =0.02

Fig. 7: Time series plot of prey and predator at =0.06
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Fig. 8: Phase portrait of prey and predator at =0.07.

Fig. 9: Time series plot of prey and predator at =0.07.

Fig. 10: Time series plot of prey and predator at =0.09. enhanced stability. Ecol Model 

CONCLUSION a stage-structured Leslie–Gower predator–prey

This paper presents a prey-predator model with 5. Kar, T.K., 2005. Stability analysis of a prey–predator
Holling type II functional response and modified Leslie model incorporating a prey refuge. Commun.
Gower incorporating a constant proportion of prey refuge. Nonlinear Sci. Numer. Simul., 10(6): 681-691.

Incorporating a refuge into system (4) provides a more
realistic model. Refugi, therefore, can be considered as,
areas in which the predator is not successfully controlling
the prey and important for the biological control of a
predator. The main focus of this paper was to introduce
new mathematical models of biological systems and
techniques for their analysis. Local asymptotic stability of
the positive equilibrium implies its global asymptotic
stability. Moreover, we established some new results
such as the existence of stable or unstable equilibrium
points under suitable values of parameters in the models.
Two species can coexist in the case of stable condition;
otherwise they might be extinct in the case of unstable
condition.
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