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Abstract: In the current work the stiff integero-differential problem of Isoelectric Focusing (IEF) in 
"anomalous" regimen was investigated by means of asymptotic methods.The solution of problem was 
obtained by means of singular asymptotics which showed a high degree of convergence with the calculated 
solutions of the problem. The physical sense of IEF "anomalous" regimen was obtained. The software was 
developed, which allows to simulate real IEF-systems in terms of the received asymptotic solution.  
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INTRODUCTION 

 
 The Isoelectric Focusing (also known as 
electrofocusing, IEF) is one of most important methods 
of modern electrochemistry [1]. It allows to separate 
with high accuracy the solution of ampholytes 
(amphoteric aminoacids) into fractions when exposed to 
the electric field. Under the IEF in solution the stable 
gradient pH is extended from anode to cathode. 
Ampholyte molecule migrates in solution by means of 
surface charge so far as to achieve the zone, where its 
electric conductivity equals zero, i.e. pH = pI, where pI 
is so called isoelectric point of ampholyte. As a result, 
ampholytes segregate into the fractions according to the 
increase of pI from anode to cathode (the steady-state 
distribution of ampholytes is formed). The method has 
immesely wide possibilities for the substance 
fractionation (primarily albumins); it has wide 
application in biological and medical investigations. 
 One of the most significant problems of 
mathematical modeling of IEF is the creation of 
mathematically laconic and descriptive models, which 
allow to make clear the physical sense of complicated 
biochemical processes in EC. The investigation of the 
so-called "anomalous" regimen of IEF by means of 
mathematical physics is of great scientific interest. 
 The originators of IEF, [2-8], have created a 
simplified mathematical model of IEF, according to 
which the concentrations of ampholytes are described 
by   the   density   function   of   Gaussian  distribution: 
C  =  C0exp(-pEx2/2D), where E is electric field 

strength, D-coefficient of diffusion, 
du

p =
dx

− -gradient 

of electrophoretic mobility of ampholyte. The solution 

of  integro-differential  IEF  problem,  as  a  special 
case of electrophoresis, was obtained on the basis of 
general models of the homogenetic multicomponent 
electrochemically active mediums in the applied 
external fields [10, 11]. The IEF modeling in terms of 
closed systems of basic balance equations has shown, 
that classical Gaussian distribution of concentration is 
the solution of the problem under the low and average 
current density. However, it was established, that under 
higher current density, the corresponding integro-
differential problem becomes stiff because of small 
parameter derivatives and the problem gets a number of 
features that impede its solution by conventional 
numerical and asymptotic methods. 
 The Gaussian distribution of ampholytes 
concentrations was discovered by many foreign 
scientists in the course of the computer simulation of 
IEF [11-14]. However, the distortions of Gaussian 
distribution have been recorded in [13-16], which are 
called "anomalous" regimen of IEF [17-20]. At the high 
values of electric current the concentration distribution 
takes "plateaus"-shaped form, which drastically differs 
from the Gaussian distribution as well as other classical 
distributions.The physical and mathematical sense of 
this phenomena has not been fully revealed in [13-16], 
which are the applied electrochemical research. 
 "Anomalous" regimen were also recorded by the 
author of this investigation in the course of numeric 
solution of the correspondent integro-differential 
problem of IEF [17-20]. The aim of the present research 
is to create the mathematical model, which would allow 
to establish the physical (electrochemical) sense of 
"anomalous" regimen of IEF through visual analysis of 
dependencies. In  the  course  of  work on the model the  
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Fig. 1: (a): The stationary distribution of three ampholytes in EC; (b): The profiles of ampholytes  
 
following problems were solved: the initial integro-
differential problem was analytically transformed into 
the ordinary boundary-value problem, which is suitable 
for the numeric solution by means of Runge-Kutta 
method together with errors accumulation control; the 
initial integro-differential problem was investigated by 
asymptotic methods and its singular asymptotic solution 
was obtained; the software was created, which allows to 
construct numeric and asymptotic solution and showed 
its full compliance to the predicted values in 
"anomalous" regimen; by means of electrochemical 
interpretation of obtained formulas, the physical sense 
of "anomalous" regimen was established; the complex 
mathematical model of IEF was developed, which 
allowed to perform computations for real IEF-systems. 
 Physical and mathematical statement of the 
problem. The aqueous solution of K ampholytes is 
placed into the EC, which has a cylinder shape with the 
length l and radius r. Initial quantities of ampholytes 
equal: mk, k = 1,2,…,N. For each of ampholytes its 
dissociation constants (k)

1K , (k)
2K  and characteristic 

mobility µk are known. The temperature T in EC is 
constant. In this model the longitudinal axial cross-
section of EC is considered, which is a rectanglar with 
the length l and the width 2r (Fig. 1). When exposed to 
the constant current density J the intrinsic pH-gradient 
is formed in EC, i.e. stationary distribution of hydrogen 
ions H+ concentrations is obtained. Under the influence 
of the constant current density J in EC the stationary 
(constant in time) distribution of amino acids is formed. 
 It is supposed that the dissociation reactions of k-s 
ampholyte are described by means of equations:  

               
( k )K1

3 2NH RCOOH NH RCOOH H+ +⇔ +  (1) 
 

              
(k)K2

2 2NHRCOOH NH RCOOH H− +⇔ +  (2) 
 

where 3NHRCOOH+ , 2NHRCOOH −  and 2NH RCOOH  
are positive, negative and neutral ions of ampholyte. 
Molar concentration of corresponding ions are k

1ξ , k
1−ξ , 

k
0ξ . The total or so-called analytical concentration is: 

k k k
k 1 0 1= −ξ ξ + ξ + ξ . 

 In equilibrium state the concentrations of the 
analyzed ampholyte ions are connected by means of 
equations:  
 

                                   k k
1 1 k=ξ α ξ  (3) 

 

                                  k k
1 1 k=− −ξ α ξ  (4) 

 

                            k k k
0 1 1 k= ( 1 )−ξ − α − α ξ  (5) 

 

where k
1α  and k

1−α  are the degrees of ampholyte 

dissociation. From reaction (1)-(2) on the basis of 
dissociation reactions its magnitude is connected by 
means of equations in equilibrium state of electrolyte: 

k (k) k
0 1 1H = Kξ ξ , k (k) k

1 2 0H = K−ξ ξ , where H is hydrogen 
concentration. Its transformation, on account of (3)-(5), 
leads to the formulas, which express degrees of 
ampholyte dissociation by means of its dissociation 
constants and concentration of hydrogen ions. The 
formulas result from this system:  
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                 k 2 (k) (k) (k) 2 1

1 1 2 1= H (K K K H H ) −α + +  (6) 
 
             k ( k ) (k) (k) (k) (k) 2 1

1 1 2 1 2 1= K K (K K K H H )−
−α + +  (7) 

 
 The isoelectric point is the state of the system, in 
which the total charge of the system is zero. 
Consequently, on account of formulas (3)-(5) the 
equations which characterize the isielectric point may 
be obtained:  
 
                            k k

1 1 k( ) = 0−α − α ξ  (8) 
 
 In addition to these ampholytes dissociations in 
aqueous solution, the reaction of autodissociation 
should be taken into account: 2H O OH H− +⇔ + . 

 For the mathematical description of the system, 
according to the mathematical theory of 
electrochemical processes [10, 11], the following 
unknown functions must be used: 1) functions ξk, k = 
1,2,…,N, analytical concentration of ampholytes; 2) 
function H, the concentration of hydrogen; 3)function 
OH, the concentration of ions OH-, connected with H 
by means of standard equation 2

wO H = k /H , where 
2 14
wk =10−  is the autodissociation constant of water; 4) 

function E, the electric field strength. The unknown 
functions are connected by closed balance system, 
which includes the equation of mass transport, 
generalized Ohm's law, the law of conservation of mass 
and the law of conservation of mass for each of 
ampholytes. In the suppositions made the basic 
equation of mass transport theory for each ampholyte 
takes the form: ik = 0. It means, that the functions are 
the solutions of one-dimensional integral-differential 
problem, which consists of N+1 differential equations 
(equation of mass transport), one algebraic equation 
(generalized Ohm's law) and N integral equations, 
which replace boundary conditions (law of conservation 
of mass for each of ampholytes):  
 

      k kk
k 1 1

d
( )E=0 ,k=1 ,2 , ,N

dx −

ξ
−ε + ξ α − α …  (9) 

 

   
( )

N
k k k k

k 1 1 k k 1 1 k
k=1

H H OH OH

d
J = D ( ) ( ) E

dx
dH d(OH)

D H E D OHE
dx dx

− −
 − α − α ξ + µ α + α ξ 
 

− + µ + +µ

∑
 (10) 

 

                     
N

k k
1 1 k

k=1

( ) H O H = 0−α − α ξ + −∑  (11) 

 

                            
l2

k k0
r ( x ) d x = mπ ξ∫  (12) 

 
where ε = RT/F is standard electrochemical parameter, 
where magnitudes R, T, F are absolute gas constant, 
temperature and Faraday constant, respectively; µH and 
µOH are constants,characteristic of ions mobility H+ and 
OH-; Dk, DH and DOH constants are the ions diffusion 
coefficients, Dk = εµk; k

1α  and k
2α  -functions of H, so 

called degrees of ampholyte dissociation, determined 
by the equations:  
 

2 ( k ) (k)
k k 1 2
1 1( k ) (k) ( k ) 2 (k) (k) (k) 2

1 2 1 1 2 1

H K K= , =
K K K H H K K K H H−α α

+ + + +
 

 
 The differential equations (9) are the equations of 
mass transport, obtained on basis of ampholyte current 
equation. The differential equation (10) is generalized 
Ohm's law with account of diffusion and 
electromigration transport of all kind of ions. The 
algebraic equation (11) is the equation of 
electrochemical neutrality. Finally, the integral equation 
(12) is the law of conservation of mass (the summary 
quantity of all forms of ampholyte is constant and 
equals mk, k = 1,2,…,N).  
 The main mathematical difficulties of system 
numerical integration (9)-(12), known as IEF integral-
differential problems [17-20], are: a) the necessity to 
convey the magnitude H from nonlinear algebraic 
equation (11) for solution of differential equations (9); 
b) the necessity to exploit the integral condition (12) 
instead of usual boundary conditions. These difficulties 
hamper the numerical solution of problem by means of 
Runge-Kutta methods. 
 For large J values, as it follows from equations (1), 
the large parameter J/ε appears before functions ξk (x) 
(ε≈; 0.0257) (9). It leads to the further problems, which 
are typical for the stiff integero-differential problem: c) 
little  changes  of  ξk(x) lead to the large changes of 
their derivatives which can bring the uncontrolable 
accumulation of computational errors; d) as a 
consequence, in the region of ``plateaus'', where values 
of derivatives are about zero, the cycling of Runge-
Kutta method followed by the incorrect solution are 
possible; e) in other points the derivatives of unknown 
functions strive to the infinity; it may lead to the jump 
of solution with its outcome to negative, (without 
physical meaning) solutions. 
 As a result, the preliminary analysis of integero-
differential problem and its solutions in "anomalous" 
regimen has shown that: for the problem in standard 
formulation (9)-(12) the risk of uncontrolable 
accumulation of computational errors is large. 
Therefore, the authors of the current research have 
performed the transformation of problem to overcome 
the difficulties a)-e). 
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 The reduction of system to the boundary-value 
problem. Theorem 1. The system of equations (9)-(12) 
with respect to N+2 unknown functions H, E, ξk (x), k = 
1,2,…,N, may be reduced to the boundary-value 
problem with respect to N unknown function ck (x), k = 
1,2,…,N: 
 

                         k k

k k

dc 1 ( ) J
=

dx c ( )
′ϕ ψ

ε
ϕ ψ σ

 (13) 

 

     
2n

k
k k k w 0

k=1 k

( ( ))= c ( ( ) ) 2k ch( )
( )

′ϕ ψ′′σ µ ϕ ψ − + µ ψ − ψ
ϕ ψ∑  (14) 

 

                    
n

k k w
k=1

c ( ) 2k sh = 0′ϕ ψ + ψ∑  (15) 

 

            
l k

k k k k 20

m
c (x) ( ) d x = M , M =

2 r
ϕ ψ

π∫  (16) 

 
                     k k k( ) = ch( )ϕ ψ δ + ψ − ψ  (17) 

 
 The old and new unknown functions are connected 
by the equalities:  
 
                       k k k(x )=c (x) ( )ξ ϕ ψ  (18) 
 
                           wH = k exp( )ψ  (19)  

 
 Proof. At the first stage the new function ψ was 
considered on basis of equality (def. as (17)): 

wH = k exp( )ψ . For convenience new constants were 

introduced:  
 

                       ( )(k) (k) 2
k 1 2 w

1
= ln K K /k

2
ψ  (20) 

 

                          (k) (k)
k 1 2

1
= K /K

2
δ  (21) 

 

                        ( )0 OH H

1
= ln /

2
ψ µ µ  (22) 

 
                            H OH=µ µ µ  (23) 

 
 In the new notation, the functions involved in (9)-
(12), have taken the form of:  
 
        k k 1

k 1 1 k k ke = =sh( )( ch( ))−
−α − α ψ − ψ δ + ψ − ψ  (24) 

 
        k k 1

k 1 1 k k k= =ch( )( ch( ))−
−σ α + α ψ − ψ δ + ψ − ψ  

 
 Besides, new functions and new current density 
were introduced: new

k k=2kξ ξ , J = 2kwJnew. Now the 
system (13)-(15) may be transformed to the following 
form, which has two advantages-compact form and 
absence of small parameter kw:s  
 

                       
new

newk
k k

d
e E = 0

dx
ξ

−ε + ξ  (25) 

 

          
( )

( )

N
new new new

k k k k k
k=1

0

d
J = e E

dx

E ch( )

 µ −ε ξ + σ ξ  
+ −ε∇ψ+ µ ψ − ψ

∑
 (26) 

 

                          
N

new
k k

k=1

e sh = 0ξ + ψ∑  (27) 

 
 At the second stage the new functions were 
introduced  for  the  simplification  of  the  proof  (def. 
as (15)):  
 

k k k( ) = ch( )ϕ ψ δ + ψ − ψ  
then  

k
k k

d ( )
= ( ) = s h ( )

d
ϕ ψ

′ϕ ψ ψ − ψ
ψ

 

 
2

k
k k2

d ( ) = ( )=ch ( )
d
ϕ ψ ′′ϕ ψ ψ − ψ
ψ

 

 
consequently,  
 

1
k k ke = ( )( ( ))−′ϕ ψ ϕ ψ , 1

k k k= ( )( ( ))−′′σ ϕ ψ ϕ ψ  
 

 Let us represent functions ξk (x) in the form of the 
product of functions ϕk(ψ) and new unknown functions 

new
kc : new new

k k k( x ) = c ( )ξ ϕ ψ . In new variables the system 
of equations (25)-(26) takes the form of:  
 

( )
new

newk
k k x

dc
= e c E

dx
′ε −εψ +  

 

( )
N

new new
x k k k k k 0

k=1

J = E c ( e ) ch( ) ′ ′′ ′−εψ + µ ϕ − ϕ + µ ψ − ψ 
 
∑  

 
and amounts to the compact form, from which factor 

x( E)′−εψ +  is excluded:  
 

                         
new new
k k

new new
k k

dc 1 ( ) J=
dx c ( )

′ϕ ψε
ϕ ψ σ

 (28) 

 
2N

new new k
k k k 0

k=1 k

( ( ))= c ( ( ) ) ch( )
( )

′ϕ ψ′′σ µ ϕ ψ − + µ ψ − ψ
ϕ ψ∑  (29) 
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 The  equation  (16), in  turn,  in  new   variables  
has the form:  
 

                           
N

new
k k

k=1

c sh = 0′ϕ + ψ∑  (30) 

 
 At the third stage of proof let us return to the 
previous analytical concentration new

k w k=2kξ ξ  and 

previous current density J = 2kwJnew.. According to (18) 
let us introduce new function new

k k wc = c /2k  and the 

equality new
w= /2kσ σ , to the consideration, then the 

system of equations (28), (29), (30) transforms to the 
form (13), (14), (17) and integral condition (12) to the 
form (16) ∆. 
 As a result, the system was reduced to a more 
compact form with reduced the number of unknown 
functions, in addition, as can be seen from (13)-(19), 
the type of algebraic and integral-differential 
dependency of unknown functions ck is clearly 
indicated. The algebraic functions now depend on an 
auxiliary variable ψ, that is, on the concentration of 
hydrogen ions H+(which follows from equation (19)). 
The coorditates dependence of the function ck is 
expressed by the differential and integral relations, 
respectively, in equations (13) and (16).  
 
Theorem 2: The system of equations (13)-(16) with 
integral conditions, with respect to N unknown 
functions ak (x), k = 1,2,…,N, may be reduced to the 
usual boundary problem, with respect to 2N unknown 
function: 1) N function ck (x), determined from N 
differential equations (13), (14); 2) N auxiliary function 
nk (x) determined from N differential equations and 2N 
boundary conditions: 
 

                            k
k k

dn (x)
= a ( )

dx
ϕ ψ  (31) 

 

 
n n

k k k k
k=1 k=1

=0.5ln 1 a exp( ) 0.5ln 1 a exp( )   ψ + ψ − + −ψ   
   

∑ ∑  (32) 

 
                                 kn (0)=0  (33) 

 

                  k
k 2

m
n (l)= , k=1,2 , ,N

rπ
…  (34) 

 
Proof: At the first stage the function ψ was expressed 
in terms of functions ck (x). Suppose that  
 

                  
n

k k
k=1

F( ) = a sh( ) shψ ψ − ψ + ψ∑  (35) 

 
 Then, F( ) = F ( )′′ψ ψ . Evidently, the solution of this 
equation is the function: F( )=Ash Bshψ ψ + ψ . From (4) 

the two equations are the following:  
 

n n

k k k k
k=1 k=1

F(0 )=A= a sh , F ( 0 ) = B = a ch 1′− ψ − ψ +∑ ∑  

 
 The (15) is equivalent to the equation F(ψ) = 0. 
Consequently, thψ = -A/B and expression of function ψ 
in terms of functions ck (x) is (def. as (32)). 
 At the second stage the integral conditions (16) 
were transformed to the boundary conditions. New 
auxiliary functions were introduced:  
 

                          
x

k k k0
n ( x ) = a ( )dxϕ ψ∫  (36) 

 
which satisfy the following boundary-value problem 
(def. as (31), (33), (34)) and allow to avoid essential 
numeric problem-integral conditions. ∆ 
As result, the problems of solution a)-b) are overcome. 
 
The numerical implementation of boundary-value 
problem: To overcome problems of solution c)-e), the 
numerical solution of problem required the preliminary 
conversion and the creation of special algorithms. In 
order to avoid the negative (without physical 
meaning)solutions, the unknown functions ak were 
represented as exponentials:  
 
            ( )k k ka = b exp 1/ F (x) , k=1 ,2 , ,Nε …  (37) 

 
where bk is constant (was defined as 1). The parameter 
1/ε (εis small magnitude) ensures high accuracy of 
calculation, because small increment of function Fk (x) 
corresponds to small increment of function ak (x). 
 For the numerical problem solving the special 
algorithms  were developed. The first algorithm was 
constructed on basis of modified Runge-Kutta method 
and Newton's method. The second algorithm was based 
on parameter marching method. It allows the 
calculations in the wide interval of current density J 
without essential accumulation of errors. These 
algorithms were implemented in Turbo Pascal using the 
standard module Graph. 
 For example, the system of eight abstract 
ampholytes was considered (Fig. 2). The values of 
isoelectric points (k) (k)

1 2pI=0.5(pK pK )+  fill out the 

interval  from  4.0 to 7.5 in constant step ∆pI = 0.5; 
∆pK = 2, (k)

1,2 kpK = p I pK± ∆ . The initial quantities of 

ampholytes are mk = 0.1(mol). Calculations were 
carried out under the assumptions that: the length of EC  
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Fig. 2: Calculated and asymptotic concentration profiles of IEF system  
 
is l = 2(dm) and its radius is r = 0.2(dm); the 
temperature is T = 298(K). The unit of current density 
measurement is A/sq.dm. 
 The graphs show, that at low and medium current 
density, the concentration profiles are similar to those 
of Gaussian distribution. At high current densities the 
system works in ``normal'' mode, which can not be 
described by Gaussian distribution. The curves have a 
"plateaus"-shaped form, which is very different from a 
Gaussian distribution. The more current density J is, the 
wider the "plateaus" is. The curves pH and σ are step-
shapped.  
 Obtaining  of  singular  asymptotics.  Lemma 1: 
The system of differential equations (13)-(15) may be 
reduced to the form, which is independent of the 
variable x: 
 

                 

N

i i w
k i=1

k N
2k

i i
i=1

a 2k ch( )
1 da =
a d a

′θ + ψ
− θ

ψ θ

∑

∑
 (38) 

 

                  
N

i i i w 0
i=1

= a 2k ch( )′σ µ θ + µ ψ − ψ∑  (39) 

 

                        
N

i i w
i=1

a 2k sh( ) = 0θ + ψ∑  (40) 

 
by means of insertion of two new functions:  
 
                           k k ka (x )=c ( )ϕ ψ  (41) 

 

                            k
k

k

( )
( ) =

( )
′ϕ ψ

θ ψ
ϕ ψ

 (42) 

Proof: Lemma 1 is proved in four steps: 
1) The  transition  in  (13) to the derivative with 

respect to ψ:  
 

k k
x

k k

1 dc J
=

c d
′ϕ′ε ψ

ψ ϕ σ
 

 
2) Derivation of equation (15) with respect to x and 

with account of (13), we obtain:  
 

          
12N N

i
x i i i w

i=1 i=1i

J ( )
= c c 2k ch( )

− ′ϕ  ′ ′′ψ − ϕ + ψ  σε ϕ   
∑ ∑  (43) 

 
 3) Transformation of the latter two equations with 

account of (13) is reduced to the form:  
 

        
12N N

k k i
i i w i

i=1 i=1k k i

1 d c ( )
= c 2k ch( ) c

c d

−
 ′ ′ϕ ϕ ′′− ϕ + ψ   ψ ϕ ϕ   

∑ ∑  (44) 

 
4) Function (41), (42) are substituted into the 

equations (14), (17) and (44). 
 
 Consequently, the original system of equations is 
reduced to the system, which is formally independent of 
the variable x. ∆ 
 In addition, a new function ak,  k = 1,2,…,N, was 
introduced into the consideration; it formally coincides 
with concentration function of ξk. Simbols ak denote the 
asymptotic solution of the problem, which corresponds 
to the functions ξk. Functions ak(ψ) should satisfy the 
following requirements: 1) to be continuous in all 
region of consideration, i.e. on the segment between 
isoelectric points of first and N-st ampholytes, 

k 1 Na C[ , ]∈ ψ ψ ,  k  = 1,2,…,N;  2)  to  be  at   least  twice 
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continuously-differentiable on each of the segments 
between two adjacent isoelectric points, i.e. 

2
k n n 1a C [ , ]+∈ ψ ψ , k = 1,2,…,N, n = 1,2,…,N-1. 

 The asymptotic solution was presented as a series 
in the small parameter (the square root of the ionic 
product of water): 
 
        0 1 2 2

k k w k w ka ( ) = a ( ) k a ( ) k a ( ) .ψ ψ + ψ + ψ …  (45) 

 
 Based on the supposition of the smoothness of 
function  ak,  it  is  natural to assume that the functions 

0
ka  must satisfy the following requirements: 1) 
0
k 1 Na C[ , ]∈ ψ ψ ,   k    =  1,2,…,N;   2)   0 2

k n n 1a C [ , ]+∈ ψ ψ , 

k = 1,2,…,N, n = 1,2,…,N-1. 
 
Lemma 2: The system of differential equations for 
definition functions 0

ka , k = 1,2,…,N, which are zero 

terms of (45), has the form: 
 

                          

N
0

0 i i
0k i=1
k k N

0 2
i i

i=1

a
da = a
d a

′θ
− θ

ψ θ

∑

∑
 (46) 

 

                                  
N

0
i i

i=1

a = 0θ∑  (47) 

 

                                  
N

0
i 0

i=1

a = a∑  (48) 

 
where a0 is constant, (to be determined later).  
 The proof is given in four steps: 1) obtaining of 
equations (46) and (47) by means of substitution of 
series (45) with subsequent reduction of homothetic 
terms; 2)obtaining equations (48) by means of 
summation of (46) with account of (47):  
 

N
0
i

i=1

d a =0.
d

  ∆ ψ  
∑  

 
Lemma 3: The system of differential equations (46)-
(48) to determine the functions 0

ka , k = 1,2,…,N, that 

are zero terms of (45), is homogeneous with respect to 
viables θk, k = 1,2,…,N.  
 The proof is given by means of transfer of the (46) 
to the differentials:  
 

0 N
0 0k k
k i i

i=1

ada = a d ,
r
θ− θ∑  

N
0 2
i i

i=1

r = a θ∑  

 
It follows that 

 
0 0
k k k

i
i

a a= a , i ,k=1,2, , N
r

∂ θ−
∂θ

…  

 
 The summation of the lattest equations with 
account of (48) leads to:  
 

0N
k

i
i=1 i

a = 0∂θ
∂θ∑  

 
 It means, that the system (46)-(48) is homogeneous 
with respect to θk, k = 1,2,…,N. ∆ 
 Lemma 3 implies that in the system (46)-(48), a 
transition to a new variable, which provides a more 
convenient form for study entry, is possible. 
 
Lemma 4: The system of differential equations (46)-
(48) to determine the functions 0

ka , k = 1,2,…,N, which 

are zero terms of (45) and satisfy smoothness 
conditions 1) 0

k 1 Na C[ , ]∈ ψ ψ , k = 1,2,…,N; 2) 
0 2
k n n 1a C [ , ]+∈ ψ ψ , k = 1,2,…,N, n = 1,2,…,N-1, by 

successive changes of variables can be reduced to a 
system with the total differential equality for each of 
the segments n n 1[ , ]+ψ ∈ ψ ψ , n = 1,2,…,N-1.  

The proof (for N = 3, for simplification). 
 
1) At first stage the first substitution was used:  
 
                      1 1 3 2 2 3= / , = /ω θ θ ω θ θ  (49) 

 
In the new variable the system (46)-(48) reduces to:  
 

                        
0

01
1 1 1 2

da = a F( , )
d

− ω ω ω
ψ

 (50) 

 

                         
0

02
2 2 1 2

da = a F( , )
d

− ω ω ω
ψ

 (51) 

 
                            0 0 0

3 1 1 2 2a = a a− ω − ω  (52) 
where  
 

0 0 0 0 1
1 2 1 1 2 2 1 1 1 2 2 2F( , ) = ( a a )(a ( 1) a ( 1))−′ ′ω ω ω − ω ω ω − − ω ω −  

 
 Namely the substitution (49) imposes the 
requirement ψ≠ψ3, i.e. ψ∈[ψ1,ψ2]. 
 
2) The second substitution of variable is made:  
 
            1 1

1 1 2 2 2R = ( 1)(1 ) , R = ( 1 )− −ω − − ω − ω  (53) 

 
The system (50)-(52) is reduced to:  
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0

0 0 01 1 2
1 1 1 2 2

da R R= a (a R a R )
d R

+ ′ ′− +
ψ

 (54) 

 
                                0 0

2 0 2 1 1a = a R a R+  (55) 
 
                        0 0

3 0 2 1 1a = a (1 R ) a (1 R )− − +  (56) 
where  

0
1 1 1 0 2 2R = a R ( R 1) a R (1 R )+ + −  

 
3) The equation (54) may be given as following:  
 
                0 1 0 0 0

1 1 2 1 1 1 2 2da = ( R R )R a (a dR a dR )−+ +  (57) 
 
 Consequently, the original system (46)-(48) is 
reduced to the system of algebraic equations and one 
total differential equality. ∆ 
 
Lemma 5: The solution of the system of differential 
equations   (46)-(48)    on    the     each     of    segments 

 
n n 1[ , ]+ψ ∈ ψ ψ , n = 1,2,…,N-1, can be represented as a 

function 0 2
k n n 1a C [ , ]+∈ ψ ψ , k = 1,2,…,N, defined by 

following formulas:  
 

   0 0 0n 1 n
n 0 n 1 0 k

n n 1 n n 1

a = a ,a =a ,a =0,k n,n 1+
+

+ +

θ θ
− ≠ +

θ −θ θ − θ
 (58) 

 
The proof It follows from (57), that  
 

0 0 2
1 1 1 2

1

a (a ) (R R )= ,
R r

∂ +−
∂

 
0 0
1 0 1 1 2

2

a a a (R R )=
R r

∂ +−
∂

 

 
Consequently, the condition must be met 
 

0 0
1 1

2 1 1 2

a a
=

R R R R
   ∂ ∂ ∂ ∂
   ∂ ∂ ∂ ∂   

 

It has the form:  
 

0 2 0 2
1 1 1 0 1 2 1 2 1 0 2 2R (R 1)(a ) a a (R 2R R R ) a R (R 1 ) = 0+ + + − + − (59) 

 
The solution of this quadratic equation has the form:  
 

0 2 0.50
1 1,2 1 1 2 2 2 1 2 1 1 2 1 2

1 1

a
(a ) = (R 2 R R R ((R 2 R R R ) 4 R R ( R 1)(1 R )) )

2R (R 1)
−− − ± + − + + −

+
 

 
The return to the formulas (49) and (53) leads to the following equalities:  
 

0 0
1 1,2 3 2 1 2 3 1 3 2 1 2 3 1

1 3 1 2

a
(a ) = [ ( ) ( ) ( ( ) ( ))]

2( )( )
θ θ − θ + θ θ − θ ± θ θ − θ − θ θ − θ

θ − θ θ − θ
 

 
Taking into account formulas (55) and (56) two solution of the original system (46)-(48) were obtained:  
 

                                                           0 0 03 1
1 1 0 2 1 3 1 0

1 3 1 3

(a ) = a , ( a ) = 0 , ( a ) = a
θ θ

−
θ −θ θ − θ

 (60) 

and  

                                                          0 0 02 1
1 2 0 2 2 0 3 2

1 2 1 2

(a ) = a , ( a ) = a , ( a ) = 0
θ θ

−
θ − θ θ − θ

 (61) 

 
 Obviously, the solution (69) does not correspond to the form of profiles in "anomalous" regimen. Consequently, 
we conclude that there is the solution (61) at ψ≠ψ3. Similarly, at ψ≠ψ2:  
 

                                                                0 0 03 2
1 2 0 3 0

2 3 2 3

a = 0 , a = a , a = a
θ θ

−
θ −θ θ − θ

 (62) 

 
 The graphics show, that functions 0

1a , 0
2a , 0

3a  must be continuous. The continuity is ensured, if solution is 

defined by formula (61) at 1 2[ , ]ψ ∈ ψ ψ  and formula (70) at 2 3[ , ]ψ ∈ ψ ψ . In fact,  
 

1 2 1 2 2 2 0 2 2 3 2 3 2a ( 0 ) = 0 = a ( 0),a ( 0 ) = a = a ( 0),a ( 0 ) = 0 = a ( 0)ψ − ψ + ψ − ψ + ψ − ψ +  

 
Similarly, the assertion is proved in the case of an arbitrary number of ampholytes. ∆ 
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Fig. 3: Approximation of concentration profile by two 

fragments of unlimited function  
 
Lemma 6: The dependence of zero term of the series 
(45) 0

ka  of the variable x in each of the intervals 

n n 1( , )+ψ ∈ ψ ψ , n = 1,2,…,N-1 is expressed by means of 

the following differential equation:  
 

   0 n n n 1 n 1 n n 1 n n 1 n n 1

n n 1 n n 1

dx a
= 1

d J
+ + + + +

+ +

 ′ ′ ′ ′ε µ θ θ −µ θ θ θ θ − θ θ
⋅ + ψ θ −θ θ − θ 

 (63) 

 
The proof is carried out by: 
1) Transformation of equation (50)with account of 

(49) to the form:  
 

                        k k
k x

k

da 1
=

J d a
 ε θ′− θ ψ ψ σ 

 (64) 

 
 2) The summation of the equations (64) k = 1,2,…,N 

with account of (38)-(40):  
 

N
2

i i i wN
i=1

i i i w 0 N
2i=1

i i
i=1

a ( ) 2k ch( )
dxa 2k ch( ) =

J da

′θ + θ + ψ
ε  ′− µ θ + µ ψ − ψ  ψ  θ

∑
∑

∑
(65) 

 
3) Obtaining the equation for the zero term of the 

series for x from (65):  
 

        
N N N

0 0 2 0 2
i i i i i i i i

i=1 i=1 i=1

dxa a ( ) = a
J d
ε     ′ ′− µ θ θ + θ θ    ψ    

∑ ∑ ∑  (66) 

 

4) Obtaining the equation (63) from (66) and (13). ∆ 
 
Note: The equation (63) shows, that in denominator of 
the fraction there is the product of functions n n 1+θ θ , 

which are zero in the points ψ = ψk and ψ = ψk+1 
respectively. Thus, this formula is not applicable in the 
region of points ψ = ψk and ψ = ψk+1; in these points 
calculation should be made with other asymptotic 
formulas;  for  example,  tangent  or  saddle-point 
methods [20]. 

 This fact, as well as the piecewise form of the 
solution lead to some questions. What are the unlimited 
functions, which fragments of the solution are they 
formed from and how do they coordinate with the 
calculated solution to the problem? Why does the 
“singularity” arise, which does not allow to use the 
given formulas ψ (x) in the entire range of integration? 
 The proofs of lemmas show, that the solution is 
obtained by means of rigorous mathematical 
transformations of the original system. The solution 
contains only two obvious suppositions, compared with 
the original problem. These are the suppositions of pair 
wise profiles of ampholytes in "anomalous" regimen 
and the possibility to neglect terms with kw. However, 
there is still another factor: the absence of the 
requirement of nonnegative solutions. 
 The physical sense of problem requires the 
nonnegativity of the unknown concentration functions. 
The search of the numerical solution of integro-
differential problem takes the form of exponential 
function (37). This method cuts off all negative 
solutions, which are sure to have the differential 
equations. In the asymptotic solution of problem this 
requirement was absent. As a result, in the transition to 
the total differential equation the partial solution of 
problem was obtained, which coincide with the 
calculated one in local region, but does not have sense 
in other regions of integration. In fact, the area of 
application of the developed asymptotics is limited by 
its positive values. In isoelectric points asymptotic 
formulas reduce to zero; hence, in these points the 
asymptotics may be applied only in the limiting case. 
 
Lemma 7: The coefficient a0 in formulas (63) is 
defined by equation:  
 

                       
N

2
0 i i i

i=1

1a = M , M = m / r
L

π∑  (67)  

 
 The proof consists of three stages. At the first 
stage, in the integral conditions (16) there is a formal 
transition to the variable ψ:  
 

                 N k
k k k 2

1

m
a ( )x d = M , M =

rψψ

ψ ′ψ ψ
π∫  (68) 

 
 At the second stage the series of functions x and ak 
for degrees kw are substituted in the conditions (68) and 
equations for the zero order are then added together:  
 

0 0 0 0 0 02 3 4
1 2 2 3 3 4

1 2 3
(a a )x d (a a ) x d (a a )x dψ ψ ψψ ψ ψ

ψ ψ ψ′ ′ ′+ ψ + + ψ + + ψ +∫ ∫ ∫ …
N

0 0 0 0N 1 N
N 2 N 1 N 1 N i

N 2 N 1 i=1

(a a ) x d (a a )x d = M−
− − ψ − ψ

ψ ψ− −

ψ ψ′ ′+ + ψ + + ψ ∑∫ ∫  (69) 
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Fig. 4: Calculated and asymptotic profile of concentration of IEF system His -His, His -Gly, His, β-Ala-His, Tyr-Arg 
 
 At the third stage, given that n n 1[ , ]+ψ ∈ ψ ψ  

0 0
n n 1 0a a = a++  each of the integrals in the last equation 

reduces to the simple integral by means of return to the 
variable x; resulting in the equation (68). ∆ 
 Note: The solution obtained is a particular solution 
of the equation (58), which is a special case of the 
differential equation of Abel. 
 Thus, this study has shown that the "anomalous" 
regimen mode solution of (13)-(15) is described by the 
zero-order terms of the series (44). The physical 
meaning of this fact is made clear by comparing the 
singular asymptotic formula (58) with (24), which 
determines the difference of the degrees of dissociation. 
In fact, the formula should be. 
 
Theorem 3 (The physical sense of "anomalous" 
regimen): In "anomalous" regimen the distribution of 
two ampholytes between its isoelectric points is 
expressed by means of difference between its degrees 
of dissociation n-s and (n+1)-s ampholytes :  
 

N
0 0 2 1n 1 n 1
n 0 n 1 0 0 i

i=1n n 1 n n 1

e e
a = a , a = a , a = ( r L) m

e e e e
−+ +

+
+ +

− π
− − ∑  (70) 

 
where  

k k 1
k 1 1 k k ke = =sh( )( ch( ))−

−α − α ψ − ψ δ + ψ − ψ  
 
mk are initial quantities of ampholytes, r and L are 
radius  and  length  of  EC.  The  gradient pH is also the  

function of difference between its degrees of 
dissociation and concentrations of hydrogen H+.  
 The proof is implemented by comparing of (58), 
Lemma-6 and Lemma-7 with formulas (24) for the 
difference between degrees of dissociation. 
 The study of the asymptotic solutions by means of 
graphical methods. The calculations were made under 
the assumptions that: the length of EC is l = 2(dm) and 
its radius is r = 0.2(dm); temperature is T = 298(K). 
Initial quantities of all ampholytes are mk = 1(mole). 
The unit of current density measurement is A/sq.dm. 
Characteristics of amholytes, used in experiment, are 
given in [1] (Table 1). 
 On the figures the concentration profiles obtained 
earlier by numerical methods are shown in black and 
the profiles corresponding to the asymptotic solution 
are in gray. The asymptotic solution is obtained by (58) 
on the basis of the values obtained by numerical 
methods.  
 The system of five standard ampholytes with pH>7 
was considered: His -His, His -Gly, His, β-Ala-His, Tyr-
Arg (Fig. 3). Figure 2 illustrates the following 
tendencies identified: 1)at low and medium current 
density singular asymptotics accurately reflects the 
ampholytes localization in EC, but has a series of 
divergence in the form of profiles; 2) the forming of 
“plateaus”-shape profile (i.e. exit to the "anomalous" 
regimen) leads to the full compliance of profile with 
asymptotics, which remains with the further increase of 
J; 3) at high current densities there is full compliance 
for all profiles of ampholytes. 
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Table 1: Characteristics of ampholytes 

N Ampholyte  ( k )
1pK  ( k )

2pK   pI ∆pK Mobility×10-4  

1 His-His  6.80  7.80  7.30 1.00 1.49  

2 His-Gly  6.27  8.57  7.42 2.30 2.40  

3 His  6.00  9.17  7.59 3.17 2.85  

4 β-Ala-His 6.83  9.51  8.17 2.68 2.30  

5 Tyr-Arg 7.55  9.80  8.68 2.25 1.58  

 
 Consequently, created singular model have had 
successful verification by the calculated experiment.  
 Asymptotic behavior remains the same for 
different IEF systems regardless of the number of 
ampholytes, their mass and characteristics.  
 

CONCLUSION 
 
1. It is found that in "anomalous" regimen modes the 

initial integro-differential problem is expressed by 
the asymptotic methods and its singular asymptotic 
solution was received. The solution by the system 
of differential equations (46)-(48) on the each of 
the segments n n 1[ , ]+ψ ∈ ψ ψ , n = 1,2,…,N-1, has the 

form of function 0 2
k n n 1a C [ , ]+∈ ψ ψ , k = 1,2,…,N, 

defined by the formulas;  
 

0 0 0n 1 n
n 0 n 1 0 k

n n 1 n n 1

a = a , a = a , a = 0 , k n,n 1+
+

+ +

θ θ
− ≠ +

θ − θ θ − θ
 

 
The dependence of functions 0

ka  from variable x on 
each of the intervals n n 1( , )+ψ ∈ ψ ψ , n = 1,2,…,N-1, 

is expressed by means of differential equation:  
 

0 n n n 1 n 1 n n 1 n n 1 n n 1

n n 1 n n 1 n n 1

dx a
= 1

d J ( )
+ + + + +

+ + +

 ′ ′ ′ ′ε µ θ θ −µ θ θ θ θ − θ θ
⋅ + ψ θ −θ θ θ θ − θ 

 

 
where ε = RT/F is a standard electrochemical 
parameter, where magnitudes R, T, F are absolute 
gas constant, temperature and Faraday constant, 
respectively. 

2. The software was created, which allowed to find 
numeric and asymptotic solution and show its 
compliance in the "anomalous" regimen; by means 
of electrochemical interpretation of obtained 
formulas the physical sense of "anomalous" 
regimen was established; the complex 
mathematical model of IEF was developed, which 
allowed to carry out computations for real IEF-
systems.Calculated experiment shows, that singular 
asymptotics has full compliance with explicit 
solution of mathematical IEF-problem (13)-(16) in 
the "anomalous" regimen.  

Software developed on the basis of the constructed 
asymptotics  has  made  it  possible  to  establish a 
high degree of consistency between asymptotic 
solutions and singular solutions of the original stiff 
integral-differential problem.  

3. Singular asymptotics leads to the important 
physical (electrochemical) conclusion: in 
"anomalous" regimen the distribution of two 
ampholytes between its isoelectric points is 
expressed by means of difference between its 
degrees of dissociation n-s and (n+1)-s of 
ampholytes:  

 
N

0 0 2 1n 1 n 1
n 0 n 1 0 0 i

i=1n n 1 n n 1

e e
a = a ,a = a , a = (2 r L) m

e e e e
−+ +

+
+ +

− π
− − ∑  

 
where k k 1

k 1 1 k k ke = =sh( )( ch( ))−
−α − α ψ − ψ δ + ψ − ψ , 

mk  are  initial  quantities  of  ampholytes, r and L 
are radius and length of EC. The gradient pH is 
also  the  function  of  difference  between  its 
degrees of dissociation and concentrations of 
hydrogen ions H+. 
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