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Abstract: The paper reports on the development of the methods for approximate analytical solution of stiff 
integro-differential problem on the example of modelling Isoelectric Focusing (IEF) in so-called 
‘anomalous’ modes. While working on the model the integro-differential problem was analytically 
transformed to a compact form suitable for investigating by asymptotic methods. The asymptotic solution 
by applying the tangent method was obtained, allowing high accuracy approximation of concentration 
profiles of polygonal curves with the given parameters.  
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INTRODUCTION 

 
 Isoelectric Focusing (IEF) is one of most effective 
and universal modern methods for protein 
characterization and fractionation. IEF has been widely 
used in many fields of modern chemistry and biology. 
The method is based on the ability of biopolymers or 
their fragments to form charged molecular complexes 
[1]. During one-dimensional IEF a mixture of 
ampholytes (amphoteric aminoacids having high buffer 
capacity) is placed in the electrophoretic chamber (EC) 
(the cylinder with length l and radius r). When exposed 
to one-dimensional IEF the pH gradient is formed (pH 
=-lgH, where H is concentration of hydrogen ions H+), 
with the fractionated components for certain fixed 
values of pHdetermined by their electrochemical 
properties having zero migration rate and being 
concentrated in the corresponding regions of EC. It is 
known as a stationary distribution of ampholytes. The 
distribution of ampholytes is invariable in any axial 
section of EC during one-dimensional IEF. The 
classical theory of electrophoresis the analytical 
concentrations of ampholytes are used to describe the 
system. Their graphs are called the ampholyte 
concentration profiles. 
 The founders of the mathematical theory of IEF 
built a basic mathematical model according to which 
the distribution of ampholyte concentration is 
determined  by the  the  Gaussian  distribution density 
[2-8]. Many foreign researchers obtained the Gaussian 
distribution of ampholyte concentrations by the 
computer simulation of IEF [8-12]. On the other hand, 
they observed a distortion of the Gaussian distribution 
[10-14] which was called the ‘anomalous’ modes of 
IEF [15-17] (Fig. 1).  

 Using  complex  mathematical  modeling  of  the 
IEF-systems by means of methods of mathematical 
physics [15-17] it was found that nonstationary 
boundary value problem becomes stiff at high current 
densities due to the presence of a small parameter in 
front of the derivatives. As a result the system enters 
the ‘anomalous’ mode. In the normal mode with the 
increase of the current density, a Gaussian curve of the 
concentration profile is stretched vertically and when it 
enters ‘anomalous mode’ its maximum seems to be 
limited by some kind of a graphical “ceiling” which 
limits its further growth and deforms it as the current 
density increaeses. At first the so called “plateaus” 
appear on tops of the curves, then the concentration 
profile takes the form of a rectangle or trapezoid. 
 Therefore, the questions arise: what is the 
mathematical interpretation of this phenomenon? How 
can one calculate the geometric parameters of the 
trapezoid (rectangles) into which initial Gaussian 
curves are transformed? The aim of the present 
investigation is to answer these questions.  
 Physical and mathematical formulation of the 
problem. The aqueous solution of N ampholytes is 
placed in the EC. For each ampholyte its dissociation 
constants of the reactions (k)

1K , (k)
2K , migration 

coefficient µk as well as the initial quantities mk, k = 
1,2,…,N are known. When exposed to the direct current 
with density J in the EC a distribution of ampholyte 
concentration is formed, resulting in stationary 
distribution of hydrogen ions H+ concentration. The 
dissociation reactions of k-ampholyte are supposed to 
be described by the following:  
 

            
( k )K1

3 2NH RCOOH NH RCOOH H+ +⇔ +  (1) 
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Fig. 1: Transformation of Gaussian curves to ‘plateau-shaped’ in ‘anomalous’ modes 
 

              
(k)K 2

2 2NH RCOOH NHRCOOH H− +⇔ +  (2) 
 
where 3NHRCOOH+ , 2NHRCOOH −  and 2NH RCOOH  

are positive, negative and neutral ampholyte ions. The 
molar concentration of the ions are k

1ξ , k
1−ξ , k

0ξ . The 
analytical concentration of the ampholyte is: 

k k k
k 1 0 1= −ξ ξ + ξ + ξ . In the equilibrium state the 

concentration of the analyzed ampholyte ions are 
related to their analytical concentration by the 
equations:  
 
                                    k k

1 1 k=ξ α ξ  (3) 

 
                                   k k

1 1 k=− −ξ α ξ  (4) 

 
                             k k k

0 1 1 k= ( 1 )−ξ − α − α ξ  (5) 

 
where k

1α  and k
1−α  are the degrees of ampholyte 

dissociation. From reactions (1)-(2) based on the theory 
of  the  kinetics  of  electrochemical  reactions  we 
obtaine: k (k) k

0 1 1H = Kξ ξ , k (k) k
1 2 0H = K−ξ ξ , where H is the 

concentration of hydrogen ions. Their transformation 
on account of (3)-(4) allows one to derive the formulas 
expressing the degree of ampholyte dissociation 
through its dissociation constant and the concentration 
of hydrogen ions: 
 
                   k 2 (k) (k) (k) 2 1

1 1 2 1= H (K K K H H ) −α + +  (6) 
 
               k ( k ) (k) (k) (k) (k) 2 1

1 1 2 1 2 1= K K (K K K H H )−
−α + +  (7) 

 
 In addition to these reactions of ampholyte 
dissociation  in  aqueous  solution  the  reaction  of 
water autoprotolysis should be taken into account: 

2H O OH H− +⇔ + . For the mathematical description of 
the system, the following functions are used [18-20]: 1) 
ξk, k = 1,2,…,N, analytical concentration of ampholytes 
(i.e. total  concentrations  of their positive, negative and 

neutral ampholyte ions); 2) H, the concentration of 
hydrogen ions; 3) OH, the concentration of hydroxyl 
ions OH-, connected with H by means of standard 
equation 2

wO H = k /H , where 2 14
wk =10−  is a constant of 

water auto-dissociation ; 4) E, electric field intensity. 
The above functions are the solutions of the one-
dimensional problem, consisting of N+1 differential 
equations, one algebraic equation and N integral 
equations, replacing the boundary conditions:  
 

         k kk
k 1 1

d
( )E=0 ,k=1 ,2 , ,N

dx −

ξ
−ε + ξ α − α …  (8) 

 

    
( )

N
k k k k

k 1 1 k k 1 1 k
k=1

H H OH OH

d
J = D ( ) ( ) E

dx
dH d(OH)

D H E D OHE
dx dx

− −
 − α − α ξ + µ α + α ξ 
 

− + µ + +µ

∑
 (9) 

 

                   
N

k k
1 1 k

k=1

( ) H O H = 0−α − α ξ + −∑  (10) 

 

                            
l2

k k0
r ( x ) d x = mπ ξ∫  (11) 

 
where ε = RT/F is the standard electrochemical 
parameter (values R, T, F-absolute gas constant, 
temperature and Faraday constant, respectively; µH and 
µOH are the constants characterizing the mobility of ions 
H+ and OH-; Dk,  DH and DOH are the constants for 
diffusion coefficients of the ions, Dk = εµk.  
 The differential equations (8) are the equation of 
mass transport. The differential equation (9) is the 
Ohm's generalized law with the diffusion (the current 
density is the sum of the current densities of all the 
ions, including both hydrogen and hydroxyl ions). The 
algebraic equation (10) is the charge balance equation. 
Finally, integral equations (11) correspond to the mass 
conservation law (the total quantity of all forms of the 
ampholyte is constant and equal to mk, k = 1,2,…,N). 
The main mathematical difficulty of numerical 
integration  of  the  system  (8)-(11),  which  was  called 



Europ. J. Appl. Sci., 5 (5): 146-153, 2013 

148 

 
integro-differential problem of IEF [15-17], is the 
necessity to determine the value H from the the implicit 
function (10) to solve differential equations (8). The 
author have transformed the system and managed to 
overcame this problem. 
 The analytical transformation of the system. 
Theorem 1. The system of equations (8)-(11) with 
reference   to   N+2  unknown  functions  H,  E,  ξk(x), 
k = 1,2,…,N, may be reduced to the boundary value 
problem  with  reference  to N unknown functions ck(x), 
k = 1,2,…,N: 
 

                          k k

k k

dc 1 ( ) J=
dx c ( )

′ϕ ψε
ϕ ψ σ

 (12) 

 

     
2n

k
k k k w 0

k=1 k

( ( ))= c ( ( ) ) 2k ch( )
( )

′ϕ ψ′′σ µ ϕ ψ − + µ ψ − ψ
ϕ ψ∑  (13) 

 

                       
n

k k w
k=1

c ( ) 2k sh = 0′ϕ ψ + ψ∑  (14) 

 
                       k k k( ) = ch( )ϕ ψ δ + ψ − ψ  (15) 
 

               
l k

k k k k 20

m
c (x) ( ) d x = M , M =

2 r
ϕ ψ

π∫  (16) 

 
 The old and new unknown functions are connected 
by the relation:  
 
                          k k k(x )=c (x) ( )ξ ϕ ψ  (17) 

 
                              wH = k exp( )ψ  (18) 

 
Proof: At the first stage of the proof the new function ψ 
was introduced and considered, defined by the equation 
(def. as (18)): H = kwexp(ψ). To simplify the equations 
new constants are introduced:  
 

                          ( )(k) (k) 2
k 1 2 w

1
= ln K K /k

2
ψ  (19) 

 

                              (k) (k)
k 1 2

1
= K /K

2
δ  (20) 

 

                            ( )0 OH H

1
= ln /

2
ψ µ µ  (21) 

 
                                H OH=µ µ µ  (22) 

 
 In  the  new  notation, the functions involved in 
(8)-(10), have taken the form: 

 
        k k 1

k 1 1 k k ke = =sh( )( ch( ))−
−α − α ψ − ψ δ + ψ − ψ  (23) 

 
In addition 
 

k k 1
k 1 1 k k k= =ch( )( ch( )) −

−σ α + α ψ − ψ δ + ψ − ψ  

 
 Besides, new functions and new current density are 
introduced: new

k k=2kξ ξ , J = 2kJnew. Now the system 
(8)-(10) can be rewritten as follows:  
 

                          
new

newk
k k

d
e E = 0

dx
ξ

−ε + ξ  (24) 

 

            
( )

( )

N
new new new

k k k k k
k=1

0

dJ = e E
dx

E ch( )

 µ −ε ξ + σ ξ  
+ −ε∇ψ+ µ ψ − ψ

∑  (25) 

 

                            
N

new
k k

k=1

e sh = 0ξ + ψ∑  (26) 

 
 At the second stage of the proof to the simplify the 
system, the new functions ϕk(ψ) are considered (def as 
(15)); then, 1

k k ke = ( )( ( ))−′ϕ ψ ϕ ψ , 1
k k k= ( )( ( ))−′′σ ϕ ψ ϕ ψ . Let 

us represent the functions ξk(x) as the product of the 
functions ϕk(ψ) by new unknown functions new

kc : 
new new
k k k( x ) = c ( )ξ ϕ ψ . With new variables the system of 

equations (24)-(25) takes the compact form, from which 
factor x( E)′−εψ + is excluded: 

 

                       
new new
k k

new new
k k

dc 1 ( ) J=
dx c ( )

′ϕ ψε
ϕ ψ σ

 (27) 

 

      
2N

new new k
k k k 0

k=1 k

( ( ))= c ( ( ) ) ch( )
( )

′ϕ ψ′′σ µ ϕ ψ − +µ ψ − ψ
ϕ ψ∑  (28) 

 
 The equation (26), in its turn, with new variables 
takes the form:  
 

                             
N

new
k k

k=1

c sh = 0′ϕ + ψ∑  (29) 

 
 At the third stage of the proof let us return to the 
old analytical concentration new

k w k=2kξ ξ  and the old 

current density J = 2kwJnew. In accordance with (17) we 
introduce the new function ck(x), so that 

k k k(x )=c (x) ( )ξ ϕ ψ . On account of new
k k wc = c /2k  as well 

as new
w= /2kσ σ , the system of equations (27), (28), (29) 

takes the form of (12), (13), (15) and integral condition 
(11)-the form of (17) ∆. 



Europ. J. Appl. Sci., 5 (5): 146-153, 2013 

149 

 

 
 
Fig. 2: The tangent to the profiles of two neighbouring ampholytes at the point of their intersection 
 
 Investigation of the system by tangent method. To 
solve the problem we used the tangent method which is 
based on the tension of a graph along the coordinate 
abscissa axis by replacing the variable: t = x/ε (ε-is a 
small value). The abscissa corresponding to the point of 
intersection of k and k+1 ampholyte profiles was taken 
as a new origin of coordinates (Fig. 2).  
 
                        k k 1(0)= (0)+ξ ξ  (30) 

 
 In the new coordinates the following assumptions 
are taken for the unknown functions:  
 
                        0

k k( ) = Sξ −∞  (31) 

 
                        k ( ) = 0ξ +∞  (32) 

 
                        k 1( ) = 0+ξ −∞  (33) 
 
                       0

k 1 k 1( ) = S+ +ξ +∞  (34) 
 
where 0

kS  and 0
k 1S +  are unknown parameters to be 

determined (parameters of IEF problem). Besides, for 
the function ψ the boundary conditions should be 
added:  
 
                         k( ) =ψ −∞ ψ  (35) 
 
                        k 1( ) = +ψ +∞ ψ  (36) 
 
where ψk+1, ψk are the constants to be determined. 
 
Theorem 2: Functions ξk(0), ξk+1(0) at t = 0 are defined 
by the equations:  

       k k k k 1 k 1 k 1( t ) = c ( t ) ( ), ( t ) = c (t) ( )+ + +ξ ϕ ψ ξ ϕ ψ  (37) 
 
where  functions  ck(t),  ck+1(t)  are  determined  from 
the boundary value problem, consiststing of two 
differential and one algebraic equations:  
 

                    k k

k k

1 dc ( ) J= , i = k , k 1
c dt ( )

′ϕ ψ +
ϕ ψ σ

 (38) 

 

                     
2k 1

i
i i i

i=k i

( ( ))= c ( ( ) )
( )

+ ′ϕ ψ′′σ µ ϕ ψ −
ϕ ψ∑  (39) 

 
                      k k k 1 k 1c ( ) c ( ) = 0+ +′ ′ϕ ψ + ϕ ψ  (40) 

 
with two initial conditions  
 
                 0

k k kc ( 0 ) = 0 . 5 S / ( (0 ) ) , i=k ,k 1ϕ ψ +  (41) 

 
 The value ψ(0) in the formulas (41) is defined from 
algebraic equation:  
 
          k k 1 k 1 k( (0)) ( (0)) ( (0)) ( (0 ) )=0+ +′ ′ϕ ψ ϕ ψ + ϕ ψ ϕ ψ  (42) 
 
Proof: At the first stage. Equations (12), (13), (14), on 
the basis of Fig. 2, are written for the two functions 
ck(t), ck+1(t). At the second stage. Equation (14) under 
t →±∞ , on account of (31)-(37) show that the term 
2kw⋅sh(ψk+1) can be neglected for being small. 
Consequently, equations (12), (13), (14) may be written 
in the form (38)-(40), in particular, the equation (40) in 
the general form:  
 

                                
n

k k
k=1

c ( ) = 0′ϕ ψ∑  (43) 
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 The equation (43), in its turn, by the multiplication 
by t′ψ , on the basis of (37), (38) and (43), we obtaine: 
 
                              k k 1 =const+ξ + ξ  (44) 
 
 The conditions (30)-(34), (44) show that 

0 0
k k 1S 0=const ,0 S =const++ + . Consequently, in this 

assumption,  
 
                              0 0

k k 1S = S =const+  (45) 

 
 From the initial condition (30) we obtain the 
following equality: 0

k k2 = Sξ  and, consequently,  
 
                          0

k k 1 k(0)= (0)=0.5S+ξ ξ  (46) 

 
 At the third stage. Equations (30), (37) and (43), 
written for t = 0, provide the system of two linear 
homogeneous algebraic equations with reference to two 
unknowns ck(0) and ck+1(0). The system is joint if its 
determinant equals zero, which yields the equation (42) 
for determining the value ψ(0). Hence, on the basis of 
(37) and (46) the initial conditions (41) are obtained ∆. 

 Now, let us draw the tangent to the profiles at the 
point t = 0 (Fig. 2). Obviously, they are set by the 
equations:  
 
                  i i i( t)= (0) (0) t , i=k ,k 1′ξ ξ + ξ +  (47) 

 
                          ( t )= (0) (0)t′ψ ψ + ψ  (48) 
 
Theorem 3: In equations (47) and (48) the coefficients 
ξk(0), ξk+1(0) and ψ(0) are determined by means of the 
obtained formulas (46) and (42) and slopes of the 
tangent are given by:  
 
                               0

k k k( 0 ) = S / t′ξ ∆  (49) 

 
                            0

k 1 k k(0)= S / t+′ξ − ∆  (50) 
 
                      k , k 1 k( 0 ) = 2 ( (0))/ t+′ψ Φ ψ ∆  (51) 

 

               k
k k , k 1

k

2 ( (0))
t = ( (0)

J ( (0)) +

 σ ϕ ψ
∆ − Φ ψ ′ϕ ψ 

 (52) 

 

 k 1 k k k k 1 k 1
k , k 1 2 2

k 1 k k k 1 =0

1 1
( (0))= + + +

+
+ + ψ

   ′ ′ ′′ ′′ϕ ϕ + δ ϕ + δ ϕ
Φ ψ − +  

ϕ ϕ ϕ ϕ  
 (53) 

 

Proof 
1. Figure 2 shows that the tangent for ξk(t) intersects 

the  straight  line  0
k= Sξ   at the point k 0

1 1 kM ( t , S )  and 

 
 abscissa axes ξ = 0 at the point k

2 2M (t ,0) . On the 

basis of (47) the equality is obtained:  
 
               k k 1

1 2 k k kt t = ( ( ) ( ))( (0))−′− ξ −∞ − ξ +∞ ξ  (54) 

 
 Similar relations for ξk+1(t) and ψ(t), on the basis of 
equations (47), (48) take the form:  
 
         k 1 k 1 1

1 2 k 1 k 1 k 1t t = ( ( ) ( ))( (0))+ + −
+ + +′− ξ −∞ − ξ +∞ ξ  (55) 

 
                 1

1 2 kt t = ( ( ) ( ))( (0))ψ ψ −′− ψ −∞ − ψ +∞ ψ  (56) 

 
We introduce the denotations 
 
                     k k k 1 k 1

1 2 k 1 2 k 1t t = t , t t = t+ +
+− ∆ − ∆  (57) 

 
                     1 2 k k 1 kt t = t , =ψ ψ

ψ +− ∆ ψ − ψ ∆ψ  (58) 

 
 As a result, the equations (57)-(61), with the 
conditions (30)-(36), (45), take the form:  
 
                                  0

k k k( 0 ) = S / t′ξ ∆  (59) 

 
                              0

k 1 k k 1(0)= S / t+ +′ξ − ∆  (60) 

 
                                k k(0)= / tψ′ψ ∆ψ ∆  (61) 

 
 Thus, the formulas (59)-(61) allow us to calculate 
the values k (0)′ξ , k 1(0)+′ξ , ψ′(0), if values ∆tk, ∆tk+1, ∆tψ 

are known. The equation (37) shows that  
 

( )k k k k k t = 0
(0)= c ( ) c ( )′ ′ ′ ′ξ ϕ ψ + ϕ ψ ψ  

 
 As a result, the equations (59), (60), using (38) can 
be given in the form:  
 
          ( )0

k k k k kS = t c (0) ( (0)) J/ / tψ′∆ ϕ ψ σ+∆ψ ∆  (62) 

 
       ( )0

k k 1 k 1 k 1 kS = t c (0) ( (0)) J/ / t+ + + ψ′−∆ ϕ ψ σ+∆ψ ∆  (63) 
 
 It is obvious, that kJ/ / t 0ψσ + ∆ ψ ∆ ≠ , otherwise 

magnitude 0
kS  would be zero. This means, that the 

system of equations (62), (63), with (76), leads to the 
important equality:  
 
                                   k 1 kt = t+∆ ∆  (64) 
 

2. The equation of tangent for ξk(t), written for the 
points M1 and M2, gives a system of equations. Its  
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Fig. 3: Tangent approximation of the concentration profile of IEF  
 
 transformation with (44) and (58) leads to the 

equations:  
 
                        k k

1 k 2 kt =0.5 t , t = 0.5 t∆ − ∆  (65) 

 
 Similarly, the equation of tangent for ξk+1(t) with 
(45) and (60) helps to obtain the equation:  
 
                       k 1 k

1 k 2 kt =0 .5 t , t = 0.5 t+ ∆ − ∆  (66) 

 
 Consequently, k k 1 k k 1

1 1 2 2t = t , t = t+ + . Differentiation of 
(43) with (45), (59), (60) gives equation (51), (53). 
Substituting (51) in (62) with (41) gives equation (52).  
 
3. Figure 2 shows that tangent (48) for ψ(x) intersect 

the straight line ψ = ψk at the point 1 1 kL ( t , )ψ ψ  and 

straight line ψ = ψk+1 at the point 2 2 k 1L (t , )ψ
+ψ . 

Using the equation (48) at these points we obtain 
the formula:  

 

    k k 1
1 k 2 k

(0) (0)
t =0.5 t , t =0.5 t

( (0)) ( (0))
ψ ψ +ψ − ψ ψ − ψ

∆ ∆ ∆
Φ ψ Φ ψ

 (67)  

 
 Let us consider the problem on the whole interval 
[0,l]. The following notations will be used: x1 is the 
point of intersection of the 1st and 2nd ampholyte 
profiles; x2 is the point of intersection of the 2nd and 
3rd ampholyte profiles; xN-1 is the point of intersection 
of (N-1) and Nampholyte profiles. Let us consider the 
graphical approximation of ampholyte concentration 
profiles by the trapezoid system (Fig. 3). 

 The Fig. 3 shows that k-profiles of concentration: 
1) on the segment 2 1

k 1 k[x , x ]−  are approximated by means 

of a strait line passing through the points 2
k 1 k 1(x ,S )− −  and 

1
k k( x , S ) ; 2) on the intervals 1 2

k 1 k 1[x , x ]− −  and 1 2
k k[x ,x ]  by 

means of tangents passing through the points 1
k 1(x ,0)− , 

2
k 1 k 1(x ,S )− −  and 1

k k( x , S ) , 2
k(x ,0) ; 3) at all other points of 

the interval [0,l] the concentration is assumed to be 
zero. The return to the initial variable x is realized on 
the basis of the formulas:  
 
            1 2

k k k k k kx = x 0.5 t , x = x 0.5 t+ ∆ ⋅ ε − ∆ ⋅ ε  (68) 

 
 The integral conditions (9) were applied to the 
functions ξk, k = 1,2,…,N. Integration is realized by 
means of simple summation of the areas of trapezoids 
and leads to the following conclusion. 
 
Theorem 4: Parameters of IEF problem 0

kS , k = 

1,2,…,N and x1, x2,…,xN are determined by a system of 
N+1 linear algebraic equations: 
 

1 1 1 0 1 1 1

k k 1 k 1 k k k 1 k k k 1 k 1 k

N N 1 N 1 N 1 N N 1 N 1

m = x S 0,5(S S)(x x )
m = x S x S 0,5(S S ) ( x x x x )

k = 2 , 3 , , N 1
m = x S 0,5(S S )(L x x )

− − − − −

− − − − −

∆ ⋅ + + − ∆
 ∆ ⋅ + ∆ ⋅ + + − − ∆ − ∆
 −
 ∆ ⋅ + + − − ∆

…  (69) 

 
and N-1 simplest (elementary) integral equation:  
 

xk
k 0 w x0

J
S = S 2k sh( ) d x , k = 1 , N 1 ′− ψ + ψ − εσ ∫  (70) 
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Fig. 4: Calculated and asymptotic concentration profiles the system with pH>7: His -His, His -Gly, His, β-Ala-His, 

Tyr-Arg, J = 0.539 
 
 Summing up the above, using the formulas (39), 
(41), (76), (51)-(53), (67), (68), the eqautions take the 
general form:  
 

    

1
k 1

1
1 2k 1

k 1 k 1 k 12 1
k 1 k 1

2
2 1k 1

k k 1 k k 1 k 1 k1 2
k k 1

1
1 2k

k k k k2 1
k k

2
k

0, x [0,x ]

(x x )S , x [x , x ]
(x x )

(x x )= S (S S ) , x [x ,x ]
(x x )

(x x )S S , x [x , x ]
(x x )

0, x [x ,H]

−

−
− − −

− −

−
− − −

−

 ∈


− ⋅ ∈ −

 −ξ + − ⋅ ∈

−
 − − ⋅ ∈

−
 ∈

 (71) 

 
1 2
i i i i i ix = x 0.5 t , x = x 0.5 t , i = k 1,k+ ∆ ⋅ε − ∆ ⋅ ε −  

 

where  values  0
iS ,  xi  are  determined  by  formulas 

(69), (70);  
 

                    i i
i i,i 1

i = (xi

t =
J )

+

ψ ψ

 Θ ϕ∆ − Φ ′ϕ 
 (72) 

 

  
2 2

i i i 1 i 1
i i i i 1 i 1

i i i 1 i 1 = (xi

S ( ) S ( )
= ( ) ( )

)

+ +
+ +

+ + ψ ψ

′ ′ϕ ϕ′′ ′′Θ µ ϕ − + µ ϕ −
′ ′ϕ ϕ ϕ ϕ

 (73) 

 

i 1 i i i i 1 i 1
i,i 1 i 2 2

i 1 i k i 1 = (xi

1 1( ( x ) ) =
)

+ + +
+

+ + ψ ψ

  ′ ′ ′′ ′′ϕ ϕ + δ ϕ + δ ϕΦ ψ − +  ϕ ϕ ϕ ϕ  
 (74) 

 

the value ψ(xi) in the formulas (73)-(75) is derived from 
algebraic equation:  
 
      i i i 1 i i 1 i i i( (x)) ( (x)) ( (x)) ( ( x ) ) = 0+ +′ ′ϕ ψ ϕ ψ + ϕ ψ ϕ ψ  (75) 
 

 Accordingly, the function ψ is approximated by a 
broken line:  

  
k k 1 k

k
k 1 k k 1 k k 1

k 1 k

k 1 k 1 k 2

, x [x ,x ]

(x x )
= ( ) ,x [x ,x ]

(x x )

, x [x ,x ]

ψ ψ
−

ψ
ψ ψ

+ + +ψ ψ
+

ψ ψ
+ + +

 ψ ∈


−ψ ψ + ψ − ψ ⋅ ∈ −
ψ ∈

 (76) 

 
k k

k k k
k

(x )x = x t
( (x ))

ψ ψ − ψ+ ∆ ⋅ε
Φ ψ

 

 
k 1 k

k 1 k k
k

0.5 (x )
x = x 0.5 t

( (x ))
ψ +

+

ψ + ψ
+ ∆ ⋅ε

Φ ψ
 

 
 Model testing. The calculations were carried out on 
the assumption that: the length of EC is l = 2(dm) and 
its radius is r = 0.2(dm). The current density is 
measured in A/sq.dm. The values of dissociation 
constants (k)

1K , (k)
2K  and migration coefficients are 

taken from [1]. The system of five standard ampholytes 
has been considered: His -His, His -Gly, His, β-Ala-His, 
Tyr-Arg. Asymptotic profiles have been constructed on 
the basis of formulas (72) (77). Fig. 4 shows that in 
‘anomalous’ mode the calculated and asymptotic 
concentration profiles provide a high degree of 
consistency.  
 

CONCLUSIONS 
 
 The asymptotic solution of the integro-differential 
problem of IEF has been obtained by using the tangent 
method. The concentration profiles are approximated 
by straight lines, whose coefficients are determined by 
the electrochemical parameters of the system. It has 
been found that the geometrical ‘ceiling’ for the system 
of concentration profiles is the broken line, with the 
parameters determined by the equations (58)-(59), plays 
the  role  of  such  a  ‘ceiling’. The  complex IEF model 
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developed in this paper has theoretical significance: 
using the suggested transformation methods and the 
asymptotic solution of stiff integro-differential problem, 
similar problems in mathematical physics, having large 
parameters, could be solved. 
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