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The Kumaraswamy-Generalized Exponentiated Pareto Distribution

Tarek M. Shams
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Abstract: The modeling and analysis of lifetimes is an important aspect of statistical work in a wide variety of
scientific and technological fields. For the first time the  Kum-GEP  distribution  is  introduced  and  studied.
This distribution can have a decreasing and upside-down bathtub failure rate function depending on the value
of its parameters; it's including some special sub-model like exponentiated Pareto Distribution and its original
form. Some structural properties of the proposed distribution are studied including explicit expressions for the
moments. We provide the density functions of the order statistics and obtain their moments. The method of
maximum likelihood is used for estimating the model parameters and the observed information matrix is derived.
The real data is provided to illustrate the theoretical results in the complete data.

Key words: Exponentiated Pareto distribution  Hazard function  Kumaraswamy distribution  Maximum
likelihood estimation  Moment

INTRODUCTION where  and  are the shape parameters.

The Pareto distribution is  the  most  popular model by Pickands [3] and has since been applied to a number of
for  analyzing   skewed   data.  The  Pareto  distribution areas including socio-economic phenomena, physical and
was first proposed by Pareto [1] as a model for the biological processes [4], reliability studies and the
distribution  of  income.  It can be used to represent analysis of environmental extremes. Davison and Smith [5]
various  other  forms   of   distributions  (other than pointed out that the GP distribution might form the basis
income  data)  that  arise  in human life. It has played a of a broad modeling approach to high-level exceedances.
very  important  role  in the investigation of city DuMouchel [6] applied it to estimate the stable index  to
population sizes, occurrence of natural resources, measure tail thickness, whereas, Davison [7, 8] modeled
insurance-risk and business failures. Arnold and Press [2] contamination due to long-range atmospheric transport of
give an extensive historical survey of its use in the radio nuclides.
context of income distribution. The cumulative Van Montfort and Witter [9,10] and van Montfort and
distribution function (cdf) of the two parameter Otten [11] applied the GP distribution to model the peaks
exponentiated Pareto distribution is: over a threshold (POT) stream flows and rainfall series

(1) flood frequencies and wave heights. Similarly, Joe [15]

A random variable X is said to follow the Pareto observations. Wang [16] applied it to develop a POT
distribution with four parameters, if the probability model for flood peaks with Poisson arrival time, whereas
density function (pdf) of X is as follows: Rosbjerg et al. [17] compared the use of the 2-parameters

for exceedances with the parent distribution being a

(2) of  the  flow  of  Buebage  Brook, Davison [8] presented a

The generalized Pareto distribution was introduced

and Smith [12-14] applied it to develop a POT model for

employed it to estimate quintiles of the maximum of N

GP and exponential distributions as distribution models

generalized GP distribution. In an extreme value analysis



   ; , 1 (1 )  baF x a b G x  

     
11; , ( ) (1 )ba af x a b abg x G x G x  

 ;G x 

 ,  

 ( ; ) 1 1 [1 (1 ) ]
baF x x       

( , , , )a b  

          
11 1; 1 1 1 1 1 1

ba a
f x ab x x x

    
                  

Europ. J. Appl. Sci., 5 (3): 92-93, 2013

93

comprehensive analysis of the extremes of data by use of (3)
the GP distribution for modeling the sizes and occurrences
of exceedances over high thresholds, Abdul Fattah et al. where a > 0 and b > 0 are two additional shape parameters
[18] introduced the new model of generalized Pareto which govern skewness and tail weights. Because of its
distribution. tractable distribution function (2), the Kw-G distribution

In this context and based on the Kumaraswamy can be used quite effectively even if the data are
distribution [19]. We propose an extension of the censored. Correspondingly, its density function is
exponentiated Pareto distribution based on the family of distributions have a very simple form:
Kumaraswamy  generalized  denoted  with  the  prefix
“Kw-G” for short distributions introduced by Cordeiro (4)
and de Castro [20]. Nadarajah et al. [21] studied some
mathematical properties of this family. The Kumaraswamy The density family (3) has many of the same
(Kw) distribution is not  very  common  among properties of the class of beta-G distributions [24], but has
statisticians and  has  been  little  explored  in  the some advantages in terms of tractability, since it does not
literature. Its cdf (for 0 < x < 1) is F(x) = 1 –  (1  –  x ) , involve any special function such as the beta function.a b

where a > 0 and b > 0 are shape parameters and the Equivalently, as occurs with the beta-G family of
density function has a simple form f(x) = abx , which can distributions, special Kw-G distributions can be generated–1

be unimodal, increasing, decreasing or constant, as follows: the Kw-normal distribution is obtained by
depending on the parameter values. It does not seem to taking G(x) in (2) to be the normal cumulative function.
be very familiar to statisticians and has not been Analogously, the Kw-Weibull [25]Kw-generalized gamma
investigated systematically in much detail before, nor has [26] Kw-Birnbaum-Saunders [27] and Kw-Gumbel [21]
its relative interchangeability with the beta distribution distributions are obtained by taking G(x) to be the cdf of
been widely appreciated. However, in a very recent paper the Weibull, generalized gamma, Birnbaum-Saunders and
[19] explored the background and genesis of this Gumbel distributions, respectively, among several others.
distribution and, more importantly, made clear some Hence, each new Kw-G distribution can be generated from
similarities and differences between the beta and Kw a specified G distribution. This paper is outlined as
distributions. follows. In section 2, we define the KW-GEP distribution

In this note, we combine the works of Kumaraswamy and provide expansions for its cumulative and density
[22] and Shawky et al. [23], to derive some mathematical functions. A range of mathematical properties of this
properties of a new model, called the Kumaraswamy distribution is considered in sections 3 and 4. These
Generalized exponentiated Pareto (Kw-GEP) distribution, include quantile function, simulation, skewness and
which stems from the following general construction: if G kurtosis. Maximum likelihood estimation is performed and
denotes the baseline cumulative function of a random the observed information matrix is determined in section
variable, then a generalized class of distributions can be 5. In section 6, we provide simulation study for the
defined by: generated data. Finally, some conclusions are addressed.

The  Kumaraswamy-Generalized   Pareto   Distribution: If  is the exponentiated Pareto cumulative distribution
with parameter  then equation (1) yields the Kw-GEP cumulative distribution for (x  0)

(5)

where  and , b, , , > 0 are non-negative shape Parameter. The corresponding pdf and hazard rate function
are:

(6)

and
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respectively

Special Distributions: The following well-known and new distributions are special sub-models of the Kum-GP
distribution.
If b = 1 in (6) we get the Kum-GEP distribution reduces to

Which is the exponentiated Pareto (EGP) for a = b = 1, we obtain the exponentiated Pareto distribution, for a = b
=  = 1, we obtain the Pareto distribution.

Expansions for the Cumulative and Density Functions: Here, we give simple expansions for the Kw-GEP cumulative
distribution. By using the generalized binomial theorem (for 0< a <1)

(7)

In equation (5), we can write:

where  and  denotes the EP cumulative distribution with parameters . Now, using the power

series (7) in the last term of (6), we obtain:

We can write

(8)

where:
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and

, denotes the Exponentiated Pareto Distribution with parameters 
Thus,  the  Kw-GEP  density  function  can  be  expressed  as  an  infinite linear combination of Pareto densities.

Thus,  some  of  its  mathematical  properties  can  be  obtained  directly from those properties of the Exponentiated
Pareto  distribution.  For  example,  the  ordinary,  inverse  and  factorial  moments, moment generating function (mgf)
and  characteristic function of the Kw-GEP distribution follow immediately from those quantities of the Pareto
distribution.

Quantile Function and Simulation: We present a method for simulating from the Kw-GEP distribution (6). The quantile
function corresponding to (5) is:

(9)

Simulating the Kw-GEP random variable is straight forward. Let U be a uniform variate onthe unit interval (0, 1). Thus,
by means of the inverse transformation method, we consider therandom variable x given by:

Which, KW, i.e. X ~ KW – GEP( ,b, , )

Skewness and Kurtosis: The shortcomings of the classical kurtosis measure are well-known. There are many heavy tailed
distributions for which this measure is infinite. So, it becomes uninformative precisely when it needs to be. Indeed, our
motivation to use quantile-based measures stemmed from the non-existence of classical kurtosis for many of the Kw
distributions. The Bowley’s skewness [28] is based on quartiles:

and the Moors’ kurtosis (see Moors ) is based on cortiles:[29]

where Q( ) represents the quantile function

Estimation and Information Matrix: In this section, we discuss maximum likelihood estimation and inference for the Kw-
GEP distribution. Let X ,X ,...,X  be a random sample from X ~ KW – GEP  where  be the vector of the model1 2 n

parameters, the log-likelihood function for  reduces to:
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The score vector , where the components corresponding to the parameters in 
are given by differentiating (10). By setting

and

The maximum likelihood estimates (MLEs) of the parameters are the solutions of the nonlinear equations  = 0,
which are solved iteratively. The observed information matrix given

whose elements are,
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Application: Here, we use a real data set to compare the fits of the Kum-GEP distribution and those of other sub-models,
i.e., the Exponentiated Pareto (EP) and Pareto distributions. We make a results comparison of the models fit. We consider
an uncensored data set corresponding an uncensored data set from consisting of 100 observations on breaking stress
of carbon fibers (in Gba): 3.7, 2.74, 2.73, 2.5, 3.6, 3.11, 3.27, 2.87, 1.47, 3.11,4.42, 2.41, 3.19, 3.22, 1.69, 3.28, 3.09, 1.87, 3.15,
4.9, 3.75, 2.43, 2.95, 2.97, 3.39, 2.96, 2.53,2.67, 2.93, 3.22, 3.39, 2.81, 4.2, 3.33, 2.55, 3.31, 3.31, 2.85, 2.56, 3.56, 3.15, 2.35, 2.55,
2.59,2.38, 2.81, 2.77, 2.17, 2.83, 1.92, 1.41, 3.68, 2.97, 1.36, 0.98, 2.76, 4.91, 3.68, 1.84, 1.59, 3.19,1.57, 0.81, 5.56, 1.73, 1.59, 2,
1.22, 1.12, 1.71, 2.17, 1.17, 5.08, 2.48, 1.18, 3.51, 2.17, 1.69,1.25, 4.38, 1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.7, 2.03, 1.8, 1.57,
1.08, 2.03, 1.61, 2.12,1.89, 2.88, 2.82, 2.05, 3.65. These data are used here only for illustrative purposes. The required
numerical evaluations are carried out using the Package of Mathcad software.

Table 1 provides the MLEs (with corresponding standard errors in parentheses) of the model parameters. The model
selection is carried out using the AIC (Akaike information criterion), the BIC (Bayesian information criterion) and the
CAIC (consistent Akaike information criteria):



a b  

 

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Table 1: MLEs of the model parameters, the corresponding SEs (given in parentheses) and the statistics AIC, BIC and CAIC
Estmates Statistic
---------------------------------------------------------------------------------- ------------------------------------------------------------------------

Model AIC BIC CAIC

Kw – GEP 1 4.368 4.134 3.142 257.762 257.762 257.665
EP 1.519 -- 6.041 4.361 245.137 245.137 256.04
P -- -- 7.423 3.985 276.106 267.106 258.009

where  denotes the log-likelihood function evaluated 6. DuMouchel, W., 1983. Estimating the stable index 
at the maximum likelihood estimates, q is the number in  order  to  measure  tail  thickness.  Ann. Statist.,
ofparameters and n is the sample size. 11: 1019-1036.

Since the values of the AIC, BIC and CAIC are smaller 7. Davison,  A.C.,   1984a.   Modeling  excesses over
for the Kum-GP distribution compared with those values high  thresholds,   with   an   application.  In:
of the other models, the new distribution seems to be a Statistical  Extremes  and  Applications, Ed. J. Tiago
very competitive model to these data. de Oliveira, 461-482. Reidel, Dordrecht, the

Concluding Remarks: The well-known two-parameter 8. Davison, A.C., 1984b. A statistical model for
exponentiated Pareto distribution, introduced by Shawky contamination due to long-range atmospheric
et al. [23], is extended by introducing two extra shape transport of radionuclides. PhD. Thesis, Department
parameters, thus defining the KW-G exponentiated Pareto of Mathematics, Imperial College of Science and
(KW-GEP) distribution having a broader class of hazard Technology, London, UK.
rate and density functions. This is achieved by taking (1) 9. Van Montfort, M.A.J. and J.V. Witter, 1985. Testing
as the baseline cumulative distribution of the generalized exponentiality against generalized Pareto distribution.
class of KW-G distributions defined by Cordeiro and de Hydrol., 78: 305-315.
Castro [20]. A detailed study on the mathematical 10. Van Montfort, M.A.J. and J.V. Witter, 1986. The
properties of the new distribution is presented. The new generalized Pareto distribution applied to rainfall
model includes as special sub-models the Pareto, depths. Hydrol. Sci. J., 31(2): 151-162.
exponentiated Pareto (EP) [29] and Pareto distributions. 11. Van Montfort,   M.A.J.     and     A.    Otten,   1991.
We obtain the quantile function, skewness and kurtosis. The  first and  the   second    e    of   the extreme
The estimation of the model parameters is approached by value distribution, EV1. Stochastic Hydrol. Hydraul.,
maximum likelihood and the observed information matrix 5: 69-76.
is obtained. An application to a real data set indicates that 12. Smith,  J.A.,  1991.  Estimating  the  upper  tail of
the fit of the new model is superior to the fits of its flood frequency distributions. Wat. Resour. Res.,
principal sub-models. We hope that the proposed model 23(8): 1657-1666.
may be interesting for a wider range of statistical research. 13. Smith, R.L., 1984. Threshold methods for sample
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