
European Journal of Applied Sciences 3 (4): 162-168, 2011
ISSN 2079-2077
© IDOSI Publications, 2011

Corresponding Author: Peter N. Jiki, Department of Civil Engineering, University of Agriculture, Makurdi, Benue State, Nigeria.

162

A Finite Element Java Program for Stability Analysis of
Pre-Cracked Beam-Columns

Peter N. Jiki

Department of Civil Engineering, University of Agriculture, Makurdi, Benue State, Nigeria

Abstract: The paper reports the findings of a study on the stability analysis of pre-cracked beam-columns using
the finite element method and a newly developed java code. First a stiffness reduction parameter which1

reduces the stiffness of the beam-column due to pre-crack is calculated. The calculated stiffness parameter is
then used to modify the stiffness of existing beam element as EI(1-), so that when =1, the beam-column has1 1

completely failed. For now a well known beam element for flexural buckling analysis is modified by the
introduction of the stiffness parameter. Here only the elastic stiffness is modified. The geometric stiffness is
not affected therefore it is not modified. The elastic and geometric stiffness matrices are assembled into a global
eigen value matrix equation which is solved using an inverse power method of matrix iteration. An object
oriented program in java is developed for the solution of matrix eigenvalue equations by first transforming the
matrix equations into a standard form ready for iteration by the inverse power method. The results of the present
study using the proposed java code compare well with those using analytical or finite element methods using
procedural codes mainly fortran codes. It is concluded that java programming language holds a great potential
as a candidate for future engineering analysis tool and that a stiffness reduction parameter proposed herein1

can be used as a structural health monitoring parameter as a failure indicator.

Key words: Stability Finite element Pre-cracked Java code Programming Object-oriented Beam-
columns

INTRODUCTION It was found and concluded that the use of a stiffness

In the stability and vibration analyses of engineering used to rapidly calculate stiffness degradation due to pre-
structures, the quantities EI,GJ and EI are often used to crack. This rapid calculation can be very useful in fatiguew

represent flexural, torsion and warping stiffness analyses of structural components as the calculations
respectively [1-9]. These quantities are used universally would reduce to evaluations of either EI(1-k) or GJ(1-k) for
to represent the elastic stiffness of components without flexural or torsion stiffness decay respectively. In Jiki [9]
cracks. For cracked components however, various forms an analytical model was used to study the stability
of representing the cracked stiffness of the components characteristics of pre-cracked beam-columns. Apart from
are expressed either as k h as in Dimarogonas[2] or as 2k l rapid calculation of stiffness decay and attempt toT T

as in Okamura et al. [4], in which k is the torsion spring quantify failure of components through the use ofT

constant of the cracked component. As can be seen from parameter k, it was also concluded by Jiki [9] that cracks
the above review so far there is no universal or standard reduce load carrying capacity of pre-cracked structural
way of expressing the stiffness of a cracked or pre- components as well as alter the vibration characteristics
cracked component. In a recent work by Jiki [9], the effect of such components [6,7]. For rapid modeling of pre-crack
of an edge crack on the reduced stiffness of a pre-cracked effects in beam-columns, the finite element method and an
beam-column was reported. A stiffness reduction(decay) object-oriented code are needed as modern tools for
parameter k due to the presence of an edge crack in a analysis [14-19].
column or a beam-column was proposed and was used to The purpose of the present work is to use a newly
study the effect of stiffness decay on the stability developed java code for finite element stability analysis of
characteristics of pre-cracked thin-walled beam-columns. pre-cracked beams and beam-columns.

decay parameter k proposed by Jiki [9] can be universally

2
1 (1 2)

4
kS −

=

2
1 (1 2)

4
c

c
kS −

=

2
1 (1 2)

4
b

b
kS −

=

2 2
1

1
(1) ()kG plain strain

E
−

= ∀

2
1

2
2 1

1 2 2
1 1

(1 2)
4
(1 2)
4

b b

k
k

k k

−

= =
−

1
1

1b b

S k
S k

= =

1
1 1 12

6M ck c Y
hbh

 =  
 

European J. Appl. Sci., 3 (4): 162-168, 2011

163

Fig. 1: Failure mode for calculation of statess intensity
factor.

Fig. 2: Pre-Cracked beam -column : (a) Edge creak in a
loaded by axial load peccentricity e. (b) section of
the cracded bar.

Derivation of Stiffness Reduction Parameter: According
to Parker [8] and Sih [1] fast fracture prediction depends
on knowledge of critical strain energy density factor S
which for mode 1 opening it can be shown that in the
direction of fracture we have [8]:

(1)

When k k1 1c

(2)

For the pre-cracked beam-column problem considered
here for mode 1 opening (Figs. 1 and 2), we assume that
k <k <k and S<S <S . Then at buckling failure, we have1 1b 1c b c

the buckling strain energy density for mode1 opening as:

(3)

Here k , k and k are stress intensity factors, µ is1 1b 1c

shear modulus and is poisons ratio. Another factor for
characterizing stress field around a cracked body is the
strain energy release rate G (which is related to the1

compliance of a component) given as[1]:

(3)

It seems from equations (1) and (4) that for some
problems both S and G are similar. This we can write as:1

S=G =Ck (5)1 1
2

From equation (5) we can also use the strain energy
density factor S to calculate the compliance of a cracked
body. Without going into detailed derivation, we propose
our stiffness reduction parameter due to crack in terms
strain energy density as:

(6)

Therefore

For mode1 opening of a crack due to bending
moment M, a well known result is (see Anifantis and
Dimarogonas[5]):

(8)

In which

1

4
1

1 1
1

1

0.923 0.199 1 sin
2 2tan .

2 cos
2

c
c h c hY ch c h

h

 + −    = 
 

1 2
6 b b

b b b
M ck c Y

hbh
 =  
 

4
0.923 0.199 1 sin

2 2tan .
2 cos

2

b

b b
b

Fb

c
c ch hY ch c h

h

 + −    = 
 

1 1 1
1

1b b b b

k M c Y
k M c Y

= =

1 1
1

b b b

P c Y
P c Y

=

(){ } { }0K G R− =      

(){ } { }0K G R  − =   

1(1)K K  = −    

European J. Appl. Sci., 3 (4): 162-168, 2011

164

(9)

At buckling, the buckling moment M is known andb

the critical stress intensity factor k is given in terms of1b

the buckling moment M as:b

(10)

In which

(11)

Substitution of equations (8)-(11) into equation (7) and
simplifying, we have:

(12)

For constant eccentricity of loading considered in the
present work equation (13) reduces to

(13)

Finite Element Analysis Model: Analysis of the
buckling strength of a pre-cracked is formulated
as a generalized eigen value problem of the form
[12]:

(14)

By introduction of the stiffness parameter into the1

assembled elastic stiffness of equation (14) we have :

(15)

In which
(16)

Equation (15) is transformed to standard eigen value
equation and solved by inverse power matrix iteration
using our newly developed java code.

Structure of the Finite Element Java Program: The java
code we have developed and used for the present work is
reported in Jiki [19]. The architecture of the code is simple.
We use a beam element to carry out the coding of the
elastic and geometric element stiffness class. Actually, the
package mainApplicationCalculatej forms the elastic and
geometric element stiffness class. The two are combined
into one class. Then we have the assembly class and
finally the boundary condition class making a total of
three classes in that package. Since matrix eigenvalue
equation for the problem at hand uses consistent elastic
and geometric beam element stiffness matrices, the
assembled matrix equation is also consistent and to use
the inverse power method we have to transform the
eigenvalue equation into a standard form ready for use in
the vector iteration. To do this transformation, we develop
another package called calculate which uses Gauss Jordan
method to invert the elastic stiffness matrix and multiply
with the geometric stiffness matrix to form another matrix
C. The package calculate also carries out the iteration to
convergence and returns the required maximum
eigenvalue, the inverse of which gives the lowest load
factor. The third and the last package is the
mainApplication package which has the main method
signature, the input class, the output class and all the
necessary constructors that initialize the objects needed
to produce results. We have first tested the packages in
the various procedures before putting all together, that is,
we tested the Gauss Jordan matrix inversion separately
using well known published works by Bathe [16], Paz [17]
and Rajasekeran [18]. We also tested matrix iteration
routine using the break and the continue control
structures where necessary. Having satisfied ourselves
that the test results from the program are satisfactory, we
tested the program with known stability problems.
We have used the program to study column buckling
problems with pin-pin, fixed-fixed, fixed-free and we are
convinced that the code gives good and acceptable
results. Besides, we have developed similar programs
using fortran codes which are ready for comparison with
the new java code. Because java language has a very
flexible control structure and with careful design of the
program to avoid indefinite loops, convergence in the
iterations are very good. In solving the problems or the

1 1
cos sine L L L

= −
−

11
cos sine L L L

+ =
−

P
EI

=

1tanL L =

1

11
cos (1)e L

+ =
−

2 4.0126

1

cr

y yy

xx

P L
EI GJ I

I

=

−

2
14.0126(1)

1

cr

y yy

xx

P L
EI GJ I

I

−
=

−

European J. Appl. Sci., 3 (4): 162-168, 2011

165

 examples presented in the present work, we observed To use our parameter in equation (18), we let
numerical instability when we applied the stiffness
reduction parameter to the assembled matrices. To avoid
such instabilities we solved the eigenvalue problems
without the crack parameter and after reaching
convergence to the required tolerance,we then apply the
factor to the critical load factor. This problem arises
because java was not designed as a number crunching
language, fortran was. The results of the present study
using the proposed java code compare well with those
using analytical or finite element methods using
procedural codes mainly fortran codes.

Program Validation: To test accuracy of solution of
linear stability analysis program proposed here a few
numerical examples with known solutions are solved
using the new program and the results are compared as
presented in Table 1.The results compare well with those
using procedural codes. Appendix1 is attached here to
show the developed kclass used for rapid calculation of
the proposed parameter .1

Application to Crack Problems
Example 1: The first application example is taken from
Okamula et al [4] who have studied the deflection of
pre-cracked beam-columns. Their closed form solution is
given as:

(17)

(18)

In which is crack parameter, is deflection, e is
eccentricity of loading and L=effective length.

(19)

(20)

Using equation (20) into equation (18) we have:

(21)

Equations (21) and (18) are compared in Figure 3 for
values of .The comparison is good.1

Example 2: The second example to validate our new java
program considers published work by Attard [15] who has
studied the lateral buckling strength of a rectangular
cantilever beam using the finite element method. He has
compared his finite element solutions with Michell’s
closed form solutions for beams with initial curvature as:

(24)

Using our proposed stiffness reduction parameter 1

into equation (24) initially proposed by Michell [15] we
have:

(25)

Equation (25) is plotted in Figure 4 for =0; 0.1 and1

0.2. When =0, we have the solution given by Attard1

[15]. For =0.1, we have the pre-cracked analytical1

solution by Jiki [9]. Our java program reported here gives
the cantilever parameter as 4.0125462275 after ten
iterations. We see that the program gives satisfactory
solutions for elastic stability solutions considered herein.

Table 1: Comparison of critical load factors for axially loaded columns

Column model Euler [10] Hartz [11] Present

Factor k k k

Pin-Pin 1.0 1.005(0.5%) 1.0055(.55%)

Fixed-Fixed 4.0 4.052(1.3%) 4.052(1.3%)

Fixed-Free 1.0 1.055(5.5%) 1.005(0.5%)

Fixed-Free /(0.699L) /(0.710L) (1.6%)2 2 2 2

2
2

2 1
cr

L P eC
P rr

 ∆   = +     

European J. Appl. Sci., 3 (4): 162-168, 2011

166

Fig. 3: The deflection of a cracked colume subjected to an eccentric compression load.

Fig. 4: Reduced lateral buckling strengths of pre-cracked beams using modified Michell’s formula[15]

Example 3: The third example considers the effect of pre-
crack on end shortening of eccentrically loaded
compression members. Tsai [13] has studied the force-
displacement relationship for compression members with
initial curvatures and those with eccentricity of loading.
He came to the conclusion that force displacement
relationship for the two cases considered is nonlinear and
is of the form [13]:

(26)

In which the nonlinearity is contained in C. For
the present model the column is eccentrically loaded
to open up the crack. In this case the parameter C is
defined as:

(sin)1
1 .
2 1 cose

p
pC

p

−
=

+

2
2

12 (1) 1 e
cr

L P eC
P rr

 ∆   = − +     

2
L

r
∆

1,e
r

  = 
 

European J. Appl. Sci., 3 (4): 162-168, 2011

167

Table 2: Effect of pre-crack on end shortening L/ r of pre-cracked columns for e/r=1.0, =0.1, 0.2.2
1

P/P , (e/r)=1.0 (1) L/ r , =0. (2)(ref 13) =0.1 (3)(present) =0.2 (4)(present) %difference [(2)-(3)] % difference [(2)-(4)]cr 1 1 1
2

0.0 0.0 0.0 0.0 0.0 0.0

0.2 2.226 2.204 2.181 1.00 2.0

0.4 5.736 5.677 5.620 1.30 2.0

0.6 14.946 14.795 14.643 1.10 2.0

0.7 28.720 28.429 28.138 1.o1 2.0

0.75 43.441 43.000 42.561 1.00 2.0

(27)

Introduction of our proposed parameter into equation (26)
we have:

(28)

Equation (28) shows that the presence of pre-crack
amplifies axial shortening or increases axial
compressibility. Effects of pre-crack on end shortening

are calculated using equation (28) for values of

and =0.1,0.2 and are presented in Table 2. It1

can be seen from the table that the effect of pre-crack on
end shortening increases with increase in . This is1

shown in columns 4 and 6 of the table in percentages. T
he effect is remarkable.

Example 4: Calculation of the stiffness reduction
parameter using equation (12) and the java code1

presented here in appendix 11.

Data: c1=20mm(initial crack length), cb=25 mm (crack
length at buckling of column), h=60 mm (width of
column), m =bending moment

When crack length is 20 mm, mb=buckling bending
moment. When these data are loaded into the java code in
appendix 11, the program returns the value of (a1 in the1

java code) =0.3185 which compares with manual
calculation=0.32. Then the reserve strength due to crack
is EI(1-)=EI(1-0.32)=0.68 or 68%. This example is1

hypothetical. It is an assumption to test the program how
ever.

CONCLUSIONS

The Present Study Has Shown That:
The proposed stiffness reduction parameter can be
used to study amplified axial compressibility or end
shortening in columns and beam-columns. An
object-oriented code in java programming language
is presented here for rapid calculation of the
parameter .1

A finite element code in java has been developed
and is documented in Jiki[19] for vibration and
stability analyses of discrete structural systems. A
java class for rapid calculation of the strength
reduction parameter is attached here in Appendix1

1 and has been used to extend the java program
documented in Jiki[19].The results shown in tables 1
and 2 were computed using java kclass proposed
herein. They compare well with exact manual
calculations.
Advantages of some of the object-oriented
programming attributes such as: program
extendibility, program reuse and write once and use
all are captured in the present work.

REFERENCES

1. Bentham, J.P. and W.T. Koiter, 1973. Asymptotic
approximations to crack problems. In methods of
analysis and Solutions of crack problems.Ed. G. Sih,
Noordhoff .

2. Dimarogonas, A.D. , 1981. Buckling of rings and
tubes with longitudinal cracks. Mechanics Research
Commentary, pp: 8.

3. Papadopoulos, C.A., 1995. Torsional vibration of
rotors with transverse surface cracks. Computers and
Structures, 51(6): 713-718.

4. Okamura, H., H.W. Liu and C.S. Chu, 1969. A cracked
column under compression. Engineering Fracture
Mechanics, 1: 547-564.

European J. Appl. Sci., 3 (4): 162-168, 2011

168

5. Anifantis, N. and A.D. Dimarogonas, 1983. Stability
of columns with a single crack subjected to follower
and vertical loads. International J. solids and
Structures, 19(4): 281-291.

6. Gunaris, G.D., C.A. Papadopoulos and
A.D. Dimarogonas, 1995. Crack identification by
coupled response measurements. Computers and
Structures, 58(2): 299-305.

7. Dentsoras, A. and A.D. Dimarogonas, 1983.
Resonance controlled fatigue crack propagation.
Engineering Fracture Mechanics, 17(4): 381-386.

8. Parker, A.P., 1981. The mechanics of fracture and
fatigue. An introduction. E and F.N.Spon Ltd.
London.

9. Jiki, P.N., 2007. Buckling analysis of pre-cracked
beam-columns by Liapunov’s second method.
European J. Mechanics. A /Solids. 26: 503-518.

10. Euler, L., 1744. Methodus Ikeniendi linear curves
maximi minimive proprietate. Gandentes, Farlum
Mchaelem Bosusquet, Lausanne and Geneva.

11. Hartz, B.J., 1965. Matrix formulation of
structural stability problems. J. Struct. Div. ASCE.
91(ST6): 141-157.

12. Peabody, A.B. and J.W. Wekezer, 1994.
Buckling strength of wood power poles using finite
elements J. Struct Engineering. 120(6): 1893-1906.

13. Tsai W.T., 1977. Nonlinear behavior of compression
members. J. Struct. Div ASCE. (ST7): 1484-1489.

14. Nikishkov, G.P., 2006. Object oriented design of finite
element code in java. J. Computer Modeling in Engng
and Sci., 11: 1-10.

15. Attard, M.M., 1986. Lateral buckling analysis
of beams by FEM. Computers and Structures,
21: 286-296.

16. Bathe, K.J., 1990. Finite element procedures in
engineering analysis.Prentice-Hall Ltd New Delhi
India. pp: 610- 613.

17. Paz, M., 1980. Structural dynamics:Theory and
applications.Van Nostrand Reinhold Ltd. New York.
pp: 176-178.

18. Rajasekaran, S., 1992. Numerical methods in science
and engineering. A practical approach. Wheeler
Publishing Co Ltd, Allahabad. pp: 168-170.

19. Jiki, P.N., 2009. Usser Manual for a Java Program
“mainApplicationCalculate” for vibration and
stability analysis of discrete structural systems.
Report no 005, Dept of Civil Engineering, University
of Agriculture Makurdi, Benue Sate, Nigeria.

Appendix 1: A java class for calculation of parameter 1

/*
 * To change this template, choose Tools | Templates
 * and open the template in the editor.
 */
package parameterCalculation;

import java.io.BufferedReader;
import java.io.InputStreamReader;
public class kclass {

/**
 * @param args the command line arguments
 */

public static void main(String[] args) {
// TODO code application logic here
InputStreamReader sr =new Input tream eader (System.in);
BufferedReader br =new BufferedReader(sr);
double c1 =0.0, cb=0.0, h=0.0,m=0.0,mb=0.0;
String txt =null;
try{

System.out.println("Enter the Value of c1 ");
txt =br.readLine();
c1=new Double(txt).doubleValue();
System.out.println("Enter the Value of cb ");
txt =br.readLine();
cb=new Double(txt).doubleValue();
System.out.println("Enter the Value of h ");
txt =br.readLine();
h=new Double(txt).doubleValue();
System.out.println("Enter the Value of m ");
txt =br.readLine();
m=new Double(txt).doubleValue();
System.out.println("Enter the Value of mb ");
txt =br.readLine();
mb=new Double(txt).doubleValue();

}catch(Exception e){
System.out.println("Error here "+e.getMessage());
}
System.out.println("The Answer is "+calculatek(c1, cb, h, m, mb));
}
public static double calculatek(double c1, double cb, double h, double
m, double mb){

double pi =3.1456;
double z1 =pi*c1/(2*h);
double zb =pi*cb/(2*h);
double q1=1-Math.sin(z1) ;
double qb=1-Math.sin(zb) ;
double k1 = 2*h/(pi*c1)*Math.tan(z1);
double x1 =1*Math.pow(k1, 0.5);
double b1 =0.199*Math.pow(q1, 4)/Math.cos(z1);
double y1 =x1*b1;
double k2 =2*h/(pi*cb)*Math.tan(zb);
double x2 =1*Math.pow(k2, 0.5);
double b2 =0.199*Math.pow(qb, 4)/Math.cos(zb);;
double yb =x2*b2;
double a1 =m/mb*y1/yb*Math.pow(c1/cb, 0.5);
return a1;
}
}

