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Abstract: In this paper, we employ homotopy perturbation method (HPM) to obtain olutions of two dimensional
sine-Gordon equation which appears quite frequently in nonlinear and applied sciences. Numerical results
explicilty reveal the complete reliability and efficiency of the proposed algorithm.
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INTRODUCTION

Nonlinear equations [1-25] appear frequently in the
mathematical modeling of physical phenomenon related
to applied and engineering sciences. Several
techniques [1-10] including Backlund transformation,
Darboux transformation, Adomian’s decomposition, exp-
function and variational iteration [5] have been used to
find appropriate solutions of such equations, see [1-5]
and the refernces therein. The basic motivation of this
paper is the extension of applications of a very efficient
technique namely Homotopy perturbation method (HPM)
which is being applied on two dimensional Sine-Gordon
(tdSG) equation with various initial values. Numerical
results explicilty reveal the complete reliability and
efficiency of the proposed algorithm.

Solution Procedure: Consider the following tdSG
hyperbolic equation [10] which has the form

ul,—uxx—uyy-t-msin(u)zo, Ly<x<L;, t>tg, (D

Where m is a constant. Initial conditions of Eq. (1) are
assumed to have the form

u(xyto) = f(x.0), w(xr0)=g(xy), Loﬁxﬁll(z)

We construct the homotopy which satisfies the relation

un+p(—uxx—uyy+msin(u))=0, pel0,1] 3)

with initial conditions

(.0 =arcog (K(“dy))(l; s (K(+) |

>

cKcosh(2K(x+aj/))csh3(K(x+dy))sech3(K(X+dV))
Coﬂl4(K(x+aj;))(1+tanh2(K(x+aj/))4)

ul (-xayao) =
\/1 4

“)
where ¢, d and K are arbitrary constants.
Assume the solution of Eq. (3) to be in the form:
Y=o+ Pt Pyt )

Substituting Eq. (5) into Eq. (3) and equating the
coefficients of like powers of p, we get following set of
differential equations

p? :(uo)tt = 0, 5 (6)
P )y = (g = (g),y, +m”sin(ug) =0, (7
P7 (W) = () = (), +m” cos(ug) =0, ®)

The solution reads
u, =0, ©)

coth(K(x + dy))2 (1 + tanh(K(x + dy))4)

u; = arccos 5
(10)
‘ cKtcosh(ZK(x + dy))csh(K(x + dy))3 sech(K(x + dy))3
coth(K(x + dy))4 (1 + tanh(K(x + dy))4)2
1—

4
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Kt cosh(ZK(x + dy))
4

48J—cosh(K(x + dy))2 csch(K(x + dy)) sech(K(x + dy))4
4

+(4K2 +4d’K? - mz)cosh(4K(x+ dy))]csch(K(x + a’y))5 sech(K(x + aly))5

Uy = [12K2 +12d%K? + m?

2 csch( K (x+ dy))4 sech(K(x+ dy))4

+ —64K?* — 64d* K>

256\/—cosh(ZK(x + dy))2 csch(K(x + a’y))4 sech(K(x + dy))4
4
~64K? cosh (4K (x+dy)) - 64d*K* cosh (4K (x + dy))
coth(K(x + dy))2 (1 + tanh(K(x + dy))4)
2

—3m? arccos

(11

x\/—cosh(2K(x + dy))2 csch(K(x + dy))4 sech(K(x + dy))4
4

coth (K (x+ dy))2 (1 + tanh(K(x + dy))4)
2

+4m? arccos cosh(4K(x + dy))

x\/—cosh(ZK(x + dy))2 csch(K(x + dy))4 sech(K(x + dy))4
4

coth(K(x + dy))2 (l + tanh(K(x + dy))4)

—m? arccos 3 cosh(SK(x + dy))

s

x\/—cosh(2K(x + dy))2 csc h(K(x + dy))4 sech(K(x + dy))4
4

and so on, in this manner the rest of components of the homotopy series can be obtained. The
solution u(x,),?) in a series form and the series can be written in a closed form solution by

(12)

coth? (K(ct +x+ dy))(l +tanh* (K(ct +x+ dy)))}
2

u(x,y,t)= arcco{

For second example, we consider the tdSG Eq. (1) with the initial conditions

4 2
u(x,,0)= arcco{(1 +COth(K(x+ dy)) )tanh(K(x+dy)) ]

2

cKcosh(ZK(x + dy))csch(K(x + dy))3 Sech([{(x N dy))3 (13)

ut (x’y70 =
Jl B 1+ coth(K(x + dy))4)2 tanh(K(x + dy))4
4

2
2 - 2
where a,,a; and a; are constants and , _ | 343 Z(C al) Ko <@
Similarly, we obtain " 16as” a c?
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o =0, (14)

1+ coth(K(x + dy))4)tanh(K(x + dy))2 cK cosh(ZK(x + dy))csh(K(x + dy))3 sech(K(x + dy))3
u; = arccos +

(15)

|+ coth(K (x + dy)) "y tanh (K (x + )
4

and so on, in this manner the rest of components of the homotopy series can be obtained. The solution u(x,,?) in a series
form and the series can be written in a closed form solution by

1+ coth(K(ct +x+ dy))4)tanh(K(ct +x+ dy))2
2

(16)

u(x,y,t) = arccos

Table 1: The absolute value (‘u(O.S y,6) =95 (0.5, t)‘ ) of the numerical results when m =5, =1, K=5and ;_1 | 4, 4,2 +£ for the solution of Eq.
2V 2 X e

(1) for initial conditions (4).

(x,t) (0.01,0.01) (0.02, 0.02) (0.03, 0.03) (0.04, 0.04) (0.05, 0.05)
c=0.5

0.00009 0,00038 0.00086 0.00152 0.00235
0.00009 0.00038 0.00085 0.00150 0.00233
0.00009 0,00038 0,00084 0,00149 0,00230
0.00009 0.00037 0.00083 0.00147 0.00228
0.00009 0.00037 0.00082 0.00146 0.00226
c=0.1

2x1071 3x1071 3x10712 101 5x10~"
4x1071 3x1071 3x10712 101 5x10~"
6x1071 3x1071 3x10712 101 5x107"
2x1071% 2x1071 3x10712 101 4x1071
2x1071 2x1071 3x10712 101 4x1071

Table 2: The absolute value (‘u(O.S,y,t) — ¢ (O.S,y,t)‘ ) of the numerical results when m =5, A=1, K=35 and d :l 44422 +”i for the solution of
2\ K?

Eq. (1) for initial conditions (13).

(x,£) (0.01, 0.01) (0.02, 0.02) (0.03, 0.03) (0.04, 0.04) (0.05, 0.05)
c=0.5

0.00009 0.00038 0.00086 0.00152 0.00235
0.00009 0.00038 0.00085 0.00150 0.00233
0.00009 0.00038 0.00084 0.00149 0.00230
0.00009 0.00037 0.00083 0.00147 0.00228
0.00009 0.00037 0.00082 0.00146 0.00226
c=0.1

1071 3x107" 3x107" 107" 5x107"
5x1071 3x107" 3x107" 107" 5x107"
2x107% 3x107" 3x107" 107" 5x107"
3x107" 3x107" 3x107" 107" 4x107"
2x107" 3x107" 3x107" 107" 4x107"

RESULTS AND DISCUSSION by wusing the homotopy perturbation  method.

We achieved a very good approximation by using 5

We try to obtain numerical solutions of two terms only of the homotopy perturbation series. We

dimensional sine-Gordon equations. We evaluate can show that even using few terms of series, the

the approximate solution wusing the 5-term overall results getting very close to exact solution, errors

approximation (¢;). In the Tables 1 and 2, the numerical can be made smaller by adding new terms of the
results obtained for approximate solution of Eq. (1) homotopy series.

127



European J. Appl. Sci., 3 (4): 125-129, 2011

CONCLUSION

In this paper, we apply HPM for solving two
dimensional sine-Gordon equation. We obtained a very
good approximation by using 5 terms of the homotopy
perturbation series. The numerical results show that
proposed method is very accurate. One concludes that
the suggested technique is very simple and
straightforward. Also, this approach does not require any
discretization, linearization or small perturbations and
therefore is capable of greatly reducing the size of
calculations while still maintaining high accuracy of the
numerical solution.

REFERENCES

Rogers, C. and W.F. Shadwich, 1982. Backlund
transformations and their applications, Academic
Press, New York.

Gu, C.H., 1999. Darboux transformations in soliton
theory and its geometric applications, Shanghai
Scientific and Technical Publishers, Shanghai.
Dehghan M. and M. Tatari, 2007. Solution of a
semilinear parabolic equation with an unknown
control function using the decomposition procedure
of adomian, Numer Methods Partial Differential Eq,
23:499-510.

Yildirim, A. and Z. Pinar, 2010. Application of Exp-
function method for Nonlinear Reaction-Diffusion
Equations arising in Mathematical Biology,
Computers & Mathematics with Applications,
60(7): 1873-1880.

Yildirim, A., 2010. Variational iteration method for
inverse problem of diffusion equation, International
Journal for Numerical Methods in Biomedical
Engineering, 26: 1713-1720,2010

Guo, B.Y., P.J. Pascual, M.J. Rodriguez, L. Vazquez,
1986. Numerical solution of the sine-Gordon
equation, Appl. Math. Comput., 18: 1-14.
Christiansen, P.L. and P.S. Lomdahl, 1981. Numerical
solution of 2 + 1 dimensional sine- Gordon solitons,
Physica D 2: 482-494.

Argyris, J., M. Haase and J.C. Heinrich, 1991.
Finite element approximation to twodimensional
sine-Gordon solitons, Comput. Meth. Appl. Mech.
Eng., 86: 1-26.

Dehghan, M. and A. Ghesmati, 2010. Numerical
simulation of two-dimensional sine-Gordon solitons
via a local weak meshless technique based on the
radial point interpolation method (RPIM), Computer
Physics Communications, 181: 772-786.

128

10. Kaya, D., 2004. An application of the modified
decomposition method for two dimensional sine-
Gordon equation, Applied Mathematics and
Computation, 159: 1-9.

He, J.H., 2005. Homotopy perturbation method for
bifurcation of nonlinear problems, International J.
Nonlinear Science and Numerical Simulation,
6:207-208.

He, J.H., 2006. Homotopy perturbation method for
solving boundary value problems, Physics Letters A,
350: 87-88.

He, J.H., 1999. Homotopy perturbation technique,
Computational Methods in Applied Mechanics and
Engineering, 178: 257-262.

Ozis, T. and A. Yildimm, 2007. Determination of
periodic solution for a u(1/3) force by He' modified
Lindstedt-Poincar method, J. Sound and Vibration,
301: 415-419.

Yildirim, A. and T. Ozis, 2007. Solutions of singular
IVPs of Lane-Emden type by homotopy perturbation
method, Physics Letters A, 369: 70-76.

Abbasbandy, S., 2007. A new application of He’s
variational iteration method for quadratic Riccati
differential equation by using Adomian’s
polynomials, J. Comput. Appl. Math., 207: 59-63.
Abbasbandy, S., 2007. Numerical solutions of
nonlinear Klein-Gordon equation by variational
iteration method, Internat. J. Numer. Meth. Engrg.,
70: 876-881.

Abdou, M.A. and A.A. Soliman, 2005. New
applications of variational iteration method, Phys. D,
211(1-2): 1-8.

Abdou, M.A. and A.A. Soliman, 2005. Variational
iteration method for solving Burger’s and coupled
Burger’s equations, J. Comput. Appl. Math.,
181:245-251.

Mohyud-Din, S.T., M.A. Noor and K.I. Noor, 2009.
Travelling wave solutions of seventh-order
generalized KdV equations using He’s polynomials,
International J. Nonlinear Sciences and Numerical
Simulation, 10(2): 223-229.

Mohyud-Din, S.T., M.A. Noor and K.I. Noor, 2009.
Some relatively new techniques for nonlinear
problems, Mathematical Problems in Engineering,
Hindawi, 2009 (2009); Article ID 234849, 25 pages,
doi:10.1155/2009/234849.

Zezer, S.A., A. Yildirim and S.T. Mohyud-Din, 2011.
He’s homotopy perturbation method for solving the
fractional KdV-Burger-Kuramato equation,
International J. Numerical Methods for Heat and
Fluid Flow, Emerald, 21(4): 448-458.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.



23.

24.

European J. Appl. Sci., 3 (4): 125-129, 2011

Mohyud-Din, S.T., A. Yildirim and G. Demirili, 2010.
Traveling wave solutions of Whitham-Broer-Kaup
equations by homotopy perturbation method, J. King
Saud University (Science) Elsevier, 22: 173-176.
Mohyud-Din, S.T., A. Yildirim and Y. Gulkanat, 2010.
Analytic solution of Volterra's population model, J.
King Saud University, Elsevier, 22: 247-250.

25. Mohyud-Din, S.T. and A. Yildirim, 2010. Exact

129

solitary-wave solutions for nonlinear dispersive K (2,
2, 1) and K (3, 3, 1) equations, J. King Saud
University, Elsevier, 22: 269-274.



