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Metamaterial Bidimensional Transmission Line with Charge Discreteness 
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Abstract: In this paper we analyze the behavior of a bidimensional transmission line acting as metamaterial with
charge  discreteness  where  the wave number is parallel to group velocity and antiparallel to phase velocity.
This paper is an extension of [6] where charge discreteness is not considered. Uncertainty relation makes
specific use of the discreteness of electric charge to obtain the condition of metamaterial in quantum electric
circuits analogous to two-dimensional electron gas and graphene in metamaterial mode.

Key words: Graphene  Transmission line  Metamaterial  Group velocity  Quantum electric circuits

INTRODUCTION Bi-Dimensional Transmission Line: Fig. 1 of [6]

Nanotechnology is envisioned actually  as  one of network to be studied in this work, which is a structure
the promoters of technological changes and major formed by infinite LHTL connected in parallel, where all
innovations [1] in computation (quantum computing and the inductances L are considered equal, as are the
quantum information processes [2, 3]), nanoelectronics, capacitances C. The system is translational invariant and
precision medicine (bio-robots) and nanomachines are therefore there is a specific dispersion relationship.
some of the possible areas of influence of Using the laws of Kirchhoff, the evolution equation
nanotechnology. Quantum theory is the basis for for the cell (j, n), formed by two capacitors and two coils
understanding the physics of devices used in integrated that are shared by neighboring cells, is:
circuits of nanoelectronics [4]. In addition, other related
transmission  lines  as  chiral systems [5, 6] and also the
so-called metamaterials [6, 7] can be modeled by an
extended two-dimensional electronic circuit like a sheet of (1)
graphene with charge discreteness [8].

Following [6], two-dimensional plasmonic medium where  the  subscripts  j  and  n  are  integers that vary
can be modeled as a transmission line consisting of from  -infinity  to  infinity.  The  indices  of  the  cells of
distributed kinetic inductance L per unit length and Fig. 1, or only by exchanging the indices j for n and
distributed  electrical  capacitance C per unit length viceversa.
(Figure 1) [6]. This plasmonic transmission line differs If we consider the plane wave-type solution for the
from the standard electromagnetic transmission line in equation of evolution of the charge in (j, n):
that the latter employs magnetic inductance instead of
kinetic inductance. The plasmonic velocity is then , (2)

, which corresponds to the plasmonic
dispersion relation and the network constant a that allow where Q  it is a constant, by introducing (2) into equation
the adjustment with experimental data. (1), we obtain the dispersion relation:

reproduced here, shows the infinite two-dimensional
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Fig. 1: The infinite two-dimensional network like bidimensional transmission line in space (p, k)

that in the formal limit q  0 the above Hamiltonian gives

(3) The system described by Eq. (5) is very cumbersome

where  is a constant and the wave numbers in each nonlinear due to charge discreteness. However, this
direction of the network are represented by k and p system is invariant under transformation ,
(dimensionless) and the dispersion law (3), is highly that is, the total pseudo flux operator
dispersive.

Dispersion Relation with Charge Discreteness:  We are
interested  in  knowing  properties   of   the  nanosized
two-dimensional network described by (3), which will
allow us to find the spectrum of energies, normal and
metamaterial normal modes.

Now by considering charge discreteness following
[9-16] and from the Hamiltonian, the usual quantization
procedure for flux and charge and the prescription for
charge discreteness, we could construct the quantum
Hamiltonian for the direct transmission line with charge
discreteness (q ), which may be written as: e

, (4)

where the index m describes the cell (circuit) at position m,
containing an inductance L and capacitance C. The
conjugate operators, charge  and pseudoflux , satisfy
the usual commutation rule:

(5)

A spatially extended solution of Eq. (4) corresponds
to the quantization of the classical electric transmission
line with discrete charge (i.e. elementary charge q ). Notee

e

the well-known dynamics related to the one-band
quantum transmission line, similar to the phonon case.

since the equations of motion for the operators are highly

commutes with the Hamiltonian, simplifying the study of
this system: 

(6)

where  represents the Hamiltonian density operator

for the fields. From the above Hamiltonian we find the
equations of motion (Heisenberg equations) for the field
operators:

(7)

(8)

In general the normal dispersion relation from Eqs. (7)
and (8) is:

(9)

where (k) is given by:
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(10) In the direction of k we have the group velocity:

with p = etc, always v  must be positive (v LC > 0), the2 2

two equations (9) and (10) are satisfied simultaneously
when / , 2n , n = ± 1, ± 2 that means that  = 2n (12)0 0

= nh/q .e

For metamaterial regime we have:

(11) (13)

with k = cte given the periodicity of both functions, a cut

Phase and Group Velocities: A complete understanding An interesting aspect is that both functions are anti
of the system described in this paper requires parallel for simultaneous values of k and p in alternating
consideration of some aspects of traditional engineering half-periods.
in this type of systems. That is, the graph of some
quantities of relevance for future designs. Fig. 4 shows In the direction of p we have the group velocity:
the behavior of the dispersion law of (3), which is periodic
in both directions, where L = C = 1 was assumed by
simplification.

This relation presents discontinuities for values of k,
p = 2  n, with n integer = 0 and it is seen that it is a
combination of the dispersion relations of the direct and (14)
dual transmission lines [6].

It is known that the group speed is the speed with and the phase velocity:
which the energy is transmitted through the network, as
well as the phase velocity is the speed of propagation of
the wave profile. Let's look at the details of these
quantities using standard numerical simulations. (15)

and phase velocity:

perpendicular to p.

Fig. 2: For , curve I represents / , curve II is the phase velocity v , curve III is the group0 f,p

velocity v . The same values are obtained with n = 0,1,2,3..., g,p
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Fig. 3: For , curve I represents / , curve II is the phase velocity v , curve III is the group0 f,p

velocity v . Here we find a case with fractional charge from 13 / 8 to 19 /8.g,p

Fig. 4: For , curve I represents / , curve II is the phase velocity v , curve III is the group0 f,p

velocity v . Here we find a case with fractional charge, the same values are obtained with /3,5 /3, 7  / 3,11g,p

./3,13  / 3,17  / 3,19 /3

Fig. 5: For , curve I represents / , curve II is the phase velocity v , curve III is the group0 f,p

velocity v . The same values are obtained with n = 0,g,p

The two-dimensional network of coupled LC circuits The dispersion ratio (3) shows that the medium is
behaves like a network formed by independent harmonic dispersive  and  is a combination of the corresponding
oscillators (similar to that of phonons or plasmons in a one-dimensional direct (RHTL) and dual (LHTL)
crystal, or in general, elemental excitations) in the transmission lines [4, 6].
reciprocal space of wave vectors and whose energy Regarding group and phase velocities, in each
spectrum is given by (10, 11). That is, the dispersion direction, it is interesting to note that both phase
relation (3) corresponds to the definition of the elementary velocities tend to 0 when k and k simultaneously grow,
excitations of this nanometric network. which is to say that the wavelength decreases.
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Fig. 6: For , curve I represents / , curve II is the phase velocity v , curve III is the group0 f,p

velocity v . The same values are obtained with  (2n  + /8). Here we find a case with fractional chargeg,p

Fig. 7: For , curve I represents / , curve II is the phase velocity v , curve III is the group0 f,p

velocity v . Here we find a case with fractional charge, the same values are obtained with /3, 5  / 3, 7  / 3,11g,p

 / 3,13  / 3,17  / 3,19  / 3.

The group and phase velocities (Fig. 5), in the is that, at intervals of half-periods in the direction of k, it
direction of union of coils, are antiparallel in the middle of behaves similarly to the metamaterials [6-8]. For the
the intervals corresponding to each period. In the quantized electric circuit considered above, the
direction of union of capacitors (Fig. 6), the group correspondence with the classical theory does not follow
velocity has negative slope and the phase velocity from  = h / 2  0 as in usual quantum mechanics, but
alternately presents positive and negative slopes, except from e  0 for a finite value of h. This suggests that a full
in the section between 0 and 2 . These results can be quantum mechanical treatment of charged particles should
useful to study fractional quantum Hall effect in graphene be governed by two finite parameters: e and h, instead of
[17, 18]. only h to study fractional quantum Hall effect in graphene

CONCLUSION

The   quantum   two-dimensional   network of
coupled circuits given by the relation (3) where the 1. De Los Santos, H.J., 2006. Principles and Aplications
spectrum of the elemental excitations that supports of NanoMENS Physics, Springer-Verlag.
nanometric network is well characterized (10) in 2. Roederer, J.G., 2006. Information and its Role in
metamaterial mode with charge discreteness. On the other Nature, Springer-Verlag.
hand, a special property observed in the studied network 3. De Los Santos, H.J., 2003. IEEE, 91, 1907.

in metamaterial mode.
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