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INTRODUCTION

For an arbitrary matrix A4,, (4) its characteristic
polynomial [1-3]:

P =A"+a A"+t a, A+a,, 6]

can be obtained, through several procedures [1, 4-8].
The approach of Leverrier-Takeno [4, 9-13] is a simple and
interesting technique to construct (1) based in the traces
of the powers A’, r=-1,...,n

On the other hand, it is well known that an arbitrary
matrix satisfies its characteristic equation, which is the
Cayley-Hamilton-Frobenius identity [1-3, 14]:

An + alA'Fl + ...anilA + anl =0. (2)

If A is non-singular (that is, det A # 0), then from (2)
we obtain its inverse matrix:

ato Lo + @ A" 2+ +a, ] A3)
n
where a, # 0 because a, = (—1)" det A.
Faddeev-Sominsky [15-24] proposed an algorithm to
determine A™' in terms of A" and their traces, which is
equivalent [23] to the Cayley-Hamilton-Frobenius theorem
(2) plus the Leverrier-Takeno’s method to construct the
characteristic polynomial of a matrix A. In Sec. 2, we
employ the Faddeev-Sominsky’s procedure to obtain the
Lanczos expression [25] for the resolvent of A [20, 21, 26,
27], that is, the Laplace transform of exp(z A) [28].

Leverrier-Takeno and Faddeev-Sominsky Techniques:
If we define the quantities:

ag=1, s; :trAk,k =12,...,n “4)

then the process of Leverrier-Takeno [4, 9-13] implies (1)
wherein the a;, are determined with the Newton’s
recurrence relation:

ra, + 810, + 828, _p +...+ S, _a+5,.=0, r=12,...,n (5)
therefore:

2 3
a = —s1,2! ay = (Sl) -8, 3! az = —(Sl) +3SlS2 _2S3

41 ay = (51)* = 6(5))% 55 + 8553 +3(55)” — 65, etc ©)

in particular, det A = (1 -)" a,, that is, the determinant of
any matrix only depends on the traces s,, which means
that A and its transpose have the same determinant. In
[29, 30] we find the general expression:

5, k—1 0 e 0
ok | S 51 k-2 0
a, = — : i : S k=1 n
T ISk-1 w2 = A
S  Spa s, (7)

The Faddeev-Sominsky’s procedure [15-24] to obtain
A~ is a sequence of algebraic computations on the
powers A" and their traces, in fact, this algorithm is given
via the instructions:
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B =4, qQ =By, G =B -ql,
1
B, 1=Cy 24, g, = n—1 rB, 1, Co1=B,1—qul,
1
B,=Cy4,  q,= ;tan, (®)
then:
at=L ©

n—-1:
qn

For example, if we apply (8) for n =4, then it is easy to
see that the corresponding ¢, imply (6) with g, = — a; and
besides (9) reproduces (3). By mathematical induction one
can prove that (8) and (9) are equivalent to (3), (4) and (5),
showing [23] thus that the Faddeev-Sominsky’s
technique has its origin in the Leverrier-Takeno method
plus the Cayley-Hamilton-Frobenius theorem.

From (8) we can see that [26]:

Ck = Ak + alAk_l + (JzAk_z +...+ ak_lA + akl,

k=12,..n=1, C,=B,—q,I=0, (10)

and fork=n-1:

C, =A" v ad" 20, "3 v va, yAd+a, ] D —a,d,

—
in harmony with (9) because a, = —¢,. The property C, =
0 is equivalent to (2); if A is singular, the process (8) gives
the adjoint matrix of A [2, 3, 16], in fact, Adj A = (-1)""
Cnfl

If the roots of (1) have distinct values, then the

Faddeev-Sominsky’s algorithm allows obtain the
corresponding eigenvectors of A [6]:

Aiiy = Miiy,  k=12,.,n, (11)
because for a given value of &, each column of:

0, = T+ AL+ O, (12)

satisfies (11) [16, 18, 27], and therefore all columns of Q,
are proportional to each other, that is, rank Q.= 1 [18]; we
note that O, = Q(A,) with the participation of the matrix:

(13)

0(z)=z""1+2"%C, +2"3Cy +...+2C,_,+C, |,

34

By synthetic division of two polynomials [1]:

p(2) n-1 -1 -2 -1-
T ZF:O(/V +a A T A T+t a At a)"T
then under the change A - A we obtain the Lanczos
expression for the resolvent of a matrix [20, 21, 26, 27]:

2”_1 anlfrcr :%;
=0 p(z)

1 1
zZI-A4 p(z2)

(14)

if A is non-singular, then (14) for z = 0 implies (9).
McCarthy [31] used (14) and the Cauchy’s integral
theorem in complex variable to show the Cayley-Hamilton-
Frobenius identity indicated in (2); the relation (14) is the
Laplace transform of exp(t A) [28].

On the other hand, Sylvester [32-35] obtained the

following interpolating definition of f{A):

A— Iyl

— (15)
Aj =M

F=37 SO,

which is valid if all eigenvalues are different from each
other. Buchheim [36] generalized (15) to multiple proper
values using Hermite interpolation, thereby giving the
first completely general definition of a matrix function.
From (14) and (15) for 1) __ 1 we deduce the
properties:

0(z) = Z Hklk_ i ’1" (A A D)

Q_,:Hk LA M),

0, =[].. o s = M0 (16)

hence the eigenvectors of A showed in (11) also are
proper vectors of the matrices Q; Besides, from (11) and

(16):
AQjii; :Hk v B T AN = HQ); - AQ; = 1,0,

a7

that is, each column of Q; is eigenvector of A with proper
value A, The resolvent (14) implies the relation (A —z 1) Q
() =—p@) I, then (A — 4,1) Q () =— p(A) T=0 in
according with (17).
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From the Sylvester’s formula (15) with f{(z) = p(z) we

obtain p(A) = 0, which is the Cayley-Hamilton-Frobenius
theorem indicated in (2). If f{z) = €, then (15) allows to
construct exp(fA) that, in particular, is valuable to
determine el motion of classical charged particles into a
homogeneous electromagnetic field, and to integrate the
Frenet-Serret equations with constant curvatures [37].
In [34, 38] we find that the book of Frazer-Duncan-Collar
[39] emphasizes the important role of the matrix
exponential in solving differential equations and was the
first to employ matrices as an engineering tool, and indeed
the first book to treat matrices as a branch of applied

mathematics.
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