On the Resolvent of a Matrix

${ }^{1}$ A. Hernández-Galeana, ${ }^{2}$ J. López-Bonilla and ${ }^{2}$ R. López-Vázquez

${ }^{1}$ Depto. Física, ESFM, Instituto Politécnico Nacional, Edif. 9, Lindavista 07738, CDMX, México. ${ }^{2}$ ESIME-Zacatenco, Instituto Politécnico Nacional, Edif. 4, 1er. Piso, Col. Lindavista CP 07738, CDMX, México

Abstract

We employ the Faddeev-Sominsky method to deduce the Lanczos expression for the resolvent of a matrix.

Subject Classification: 15-XX, 97H60.
Key words: Characteristic polynomial • Faddeev-Sominsky's algorithm • Cayley-Hamilton-Frobenius theorem • Leverrier-Takeno's procedure • Resolvent of a matrix • Sylvester's matrix formula

INTRODUCTION

For an arbitrary matrix $A_{n x n}\left(A_{j}^{i}\right)$ its characteristic polynomial [1-3]:
$p(\lambda)=\lambda^{n}+a_{1} \lambda^{n-1}+\ldots+a_{n-1} \lambda+a_{n}$,
can be obtained, through several procedures [1, 4-8]. The approach of Leverrier-Takeno [4, 9-13] is a simple and interesting technique to construct (1) based in the traces of the powers $\mathrm{A}^{r}, r=-1, \ldots, n$

On the other hand, it is well known that an arbitrary matrix satisfies its characteristic equation, which is the Cayley-Hamilton-Frobenius identity [1-3, 14]:

$$
\begin{equation*}
A^{n}+a_{1} A^{n-1}+\ldots a_{n-1} A+a_{n} I=0 \tag{2}
\end{equation*}
$$

If A is non-singular (that is, $\operatorname{det} \mathrm{A} \neq 0$), then from (2) we obtain its inverse matrix:
$A^{-1}=-\frac{1}{a_{n}}\left(A^{-1}+a_{1} A^{n-2}+\ldots+a_{n-1} I\right)$
where $a_{n} \neq 0$ because $a_{n}=(-1)^{\mathrm{n}}$ det A.
Faddeev-Sominsky [15-24] proposed an algorithm to determine A^{-1} in terms of A^{r} and their traces, which is equivalent [23] to the Cayley-Hamilton-Frobenius theorem (2) plus the Leverrier-Takeno's method to construct the characteristic polynomial of a matrix A. In Sec. 2, we employ the Faddeev-Sominsky's procedure to obtain the Lanczos expression [25] for the resolvent of A [20, 21, 26, 27], that is, the Laplace transform of $\exp (t \mathrm{~A})$ [28].

Leverrier-Takeno and Faddeev-Sominsky Techniques: If we define the quantities:

$$
\begin{equation*}
a_{0}=1, \quad s_{k}=\operatorname{tr} A^{k}, k=1,2, \ldots, n \tag{4}
\end{equation*}
$$

then the process of Leverrier-Takeno [4, 9-13] implies (1) wherein the a_{i} are determined with the Newton's recurrence relation:

$$
\begin{equation*}
r a_{r}+s_{1} a_{r-1}+s_{2} a_{r-2}+\ldots+s_{r-1} a_{1}+s_{r}=0, \quad r=1,2, \ldots, n \tag{5}
\end{equation*}
$$

therefore:

$$
\begin{align*}
& a_{1}=-s_{1}, 2!a_{2}=\left(s_{1}\right)^{2}-s_{2}, \quad 3!a_{3}=-\left(s_{1}\right)^{3}+3 s_{1} s_{2}-2 s_{3} \\
& 4!a_{4}=\left(s_{1}\right)^{4}-6\left(s_{1}\right)^{2} s_{2}+8 s_{1} s_{3}+3\left(s_{2}\right)^{2}-6 s_{4}, \text { etc } \tag{6}
\end{align*}
$$

in particular, $\operatorname{det} \mathrm{A}=(1-)^{\mathrm{n}} a_{n}$, that is, the determinant of any matrix only depends on the traces s_{r}, which means that A and its transpose have the same determinant. In [29, 30] we find the general expression:
$a_{k}=\frac{(-1)^{k}}{k!}\left|\begin{array}{ccccc}s_{1} & k-1 & 0 & \cdots & 0 \\ s_{2} & s_{1} & k-2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ s_{k-1} & s_{k-2} & \cdots & \cdots & 1 \\ s_{k} & s_{k-1} & \cdots & \cdots & s_{1}\end{array}\right|, \quad k=1, \ldots, n$.
The Faddeev-Sominsky's procedure [15-24] to obtain A^{-1} is a sequence of algebraic computations on the powers A^{r} and their traces, in fact, this algorithm is given via the instructions:

Corresponding Author: J. López-Bonilla, ESIME-Zacatenco, Instituto Politécnico Nacional, Edif. 4, 1er. Piso, Col. Lindavista CP 07738, CDMX, México.
$B_{1}=A, \quad q_{1}=\operatorname{tr} B_{1}, \quad C_{1}=B_{1}-q_{1} I$,
$B_{2}=C_{1} A, \quad q_{2}=\frac{1}{2} \operatorname{tr} B_{2}, \quad C_{2}=B_{2}-q_{2} I$,
$\vdots \quad \vdots \quad \vdots$
$B_{n-1}=C_{n-2} A, \quad q_{n-1}=\frac{1}{n-1} \operatorname{tr} B_{n-1}, \quad C_{n-1}=B_{n-1}-q_{n-1} I$,
$B_{n}=C_{n-1} A, \quad q_{n}=\frac{1}{n} \operatorname{tr} B_{n}$,
then:
$A^{-1}=\frac{1}{q_{n}} C_{n-1}$.

For example, if we apply (8) for $n=4$, then it is easy to see that the corresponding q_{r} imply (6) with $q_{j}=-a_{j}$ and besides (9) reproduces (3). By mathematical induction one can prove that (8) and (9) are equivalent to (3), (4) and (5), showing [23] thus that the Faddeev-Sominsky's technique has its origin in the Leverrier-Takeno method plus the Cayley-Hamilton-Frobenius theorem.

From (8) we can see that [26]:
$C_{k}=A_{k}+a_{1} A^{k-1}+a_{2} A^{k-2}+\ldots+a_{k-1} A+a_{k} I$,
$k=1,2, \ldots, n-1, \quad C_{n}=B_{n}-q_{n} I=0$,
and for $k=\mathrm{n}-1$:
$C_{n-1}=A^{n-1}+a_{1} A^{n-2} a_{2} A^{n-3}+\ldots+a_{n-2} A+a_{n-1} I \stackrel{(3)}{=}-a_{n} A^{-1}$,
in harmony with (9) because $a_{n}=-q_{n}$. The property $\mathrm{C}_{\mathrm{n}}=$ 0 is equivalent to (2); if A is singular, the process (8) gives the adjoint matrix of A $[2,3,16]$, in fact, $\operatorname{Adj} \mathrm{A}=(-1)^{\mathrm{n}+1}$ C_{n-1}

If the roots of (1) have distinct values, then the Faddeev-Sominsky's algorithm allows obtain the corresponding eigenvectors of A [6]:
$A \vec{u}_{k}=\lambda_{k} \vec{u}_{k}, \quad k=1,2, \ldots, n$,
because for a given value of k, each column of:
$Q_{k}=\lambda_{k}^{n-1} I+\lambda_{k}^{n-2} C 1+\ldots+C_{n-1}$,
satisfies (11) [16, 18, 27], and therefore all columns of Q_{k} are proportional to each other, that is, $\operatorname{rank} \mathrm{Q}_{\mathrm{k}}=1$ [18]; we note that $Q_{k}=\mathrm{Q}\left(\lambda_{\mathrm{k}}\right)$ with the participation of the matrix:

$$
\begin{equation*}
Q(z) \equiv z^{n-1} I+z^{n-2} C_{1}+z^{n-3} C_{2}+\ldots+z C_{n-2}+C_{n-1} \tag{13}
\end{equation*}
$$

By synthetic division of two polynomials [1]:
$\frac{p(z)}{z-\lambda}=\sum_{r=0}^{n-1}\left(\lambda^{r}+a_{1} \lambda^{r-1}+a_{2} \lambda^{r-2}+\ldots+a_{r-1} \lambda+a_{r}\right) z^{n-1-r}$,
then under the change $\lambda \rightarrow \mathrm{A}$ we obtain the Lanczos expression for the resolvent of a matrix [20, 21, 26, 27]:
$\frac{1}{z I-A}=\frac{1}{p(z)} \sum_{r=0}^{n-1} z^{n-1-r} C_{r}=\frac{Q(z)}{p(z)} ;$
if A is non-singular, then (14) for $z=0$ implies (9). McCarthy [31] used (14) and the Cauchy's integral theorem in complex variable to show the Cayley-HamiltonFrobenius identity indicated in (2); the relation (14) is the Laplace transform of $\exp (\mathrm{t} A)$ [28].

On the other hand, Sylvester [32-35] obtained the following interpolating definition of $f(\mathrm{~A})$:
$f(A)=\sum_{j=1}^{n} f\left(\lambda_{j}\right) \Pi_{k \neq j} \frac{A-\lambda_{k} I}{\lambda_{j}-\lambda_{k}}$,
which is valid if all eigenvalues are different from each other. Buchheim [36] generalized (15) to multiple proper values using Hermite interpolation, thereby giving the first completely general definition of a matrix function. From (14) and (15) for $f(s)=\frac{1}{z-s}$ we deduce the
properties: $Q(z)=\sum_{j=1}^{n} \prod_{k=1, k \equiv j}^{n} \frac{z-\lambda_{k}}{\lambda_{j}-\lambda_{k}}\left(A-\lambda_{k} I\right)$
$\therefore Q_{j}=\prod_{k=1, k \neq j}^{n}\left(A-\lambda_{k} I\right)$,
$Q_{j} \vec{u}_{j}=\prod_{k=1, k \neq j}^{n}\left(\lambda_{j}-\lambda_{k}\right) \vec{u}_{j}$,
hence the eigenvectors of A showed in (11) also are proper vectors of the matrices Q_{j} Besides, from (11) and (16):

$$
A Q_{j} \vec{u}_{j}=\prod_{k=1, k \neq j}^{n}\left(\lambda_{j}-\lambda_{k}\right) \lambda_{j} \vec{u}_{j}=\lambda_{j} Q_{j} \vec{u}_{j} \therefore A Q_{j}=\lambda_{j} Q_{j}
$$

that is, each column of Q_{j} is eigenvector of A with proper value λ_{j} The resolvent (14) implies the relation $(\mathrm{A}-\mathrm{zI}) \mathrm{Q}$ $(\mathrm{z})=-p(z) \mathrm{I}$, then $\left(\mathrm{A}-\lambda_{k} \mathrm{I}\right) \mathrm{Q}\left(\lambda_{k}\right)=-p\left(\lambda_{k}\right) \mathrm{I}=0$ in according with (17).

From the Sylvester's formula (15) with $f(z)=p(z)$ we obtain $p(\mathrm{~A})=0$, which is the Cayley-Hamilton-Frobenius theorem indicated in (2). If $f(z)=e^{t z}$, then (15) allows to construct $\exp (t \mathrm{~A})$ that, in particular, is valuable to determine el motion of classical charged particles into a homogeneous electromagnetic field, and to integrate the Frenet-Serret equations with constant curvatures [37]. In $[34,38]$ we find that the book of Frazer-Duncan-Collar [39] emphasizes the important role of the matrix exponential in solving differential equations and was the first to employ matrices as an engineering tool, and indeed the first book to treat matrices as a branch of applied mathematics.

REFERENCES

1. Lanczos, C., 1988. Applied analysis, Dover, New York.
2. Hogben, L., 2006. Handbook of linear algebra, Chapman \& Hall / CRC Press, London.
3. Horn, R.A. and Ch. R. Johnson, 2013. Matrix analysis, Cambridge University Press.
4. Wayland, H., 1945. Expansion of determinantal equations into polynomial form, Quart. Appl. Math., 2: 277-306.
5. Householder, A.S. and F.L. Bauer, 1959. On certain methods for expanding the characteristic polynomial, Numerische Math., 1: 29-37.
6. Wilkinson, J.H., 1965. The algebraic eigenvalue problem, Clarendon Press, Oxford.
7. Lovelock, D. and H. Rund, 1975. Tensors, differential forms, and variational principles, John Wiley and Sons, New York.
8. López-Bonilla, J., S. Vidal-Beltrán and A. ZúñigaSegundo, 2018. Characteristic equation of a matrix via Bell polynomials, Asia Mathematika, 2(2): 49-51.
9. Leverrier, U.J.J., 1840. Sur les variations séculaires des éléments elliptiques des sept planétes principales, J. de Math. Pures Appl. Série, 1(5): 220-254.
10. Krylov, A.N., 1931. On the numerical solution of the equation, that in technical problems, determines the small oscillation frequencies of material systems, Bull. de l'Acad. Sci. URSS, 7, No. 4: 491-539.
11. Takeno, H., 1954. A theorem concerning the characteristic equation of the matrix of a tensor of the second order, Tensor NS, 3: 119-122.
12. Wilson, E.B., J.C. Decius and P.C. Cross, 1980. Molecular vibrations, Dover, New York, pp: 216-217.
13. Guerrero-Moreno, I., J. López-Bonilla and J. RiveraRebolledo, 2011. Leverrier-Takeno coefficients for the characteristic polynomial of a matrix, J. Inst. Eng. (Nepal), 8(1-2): 255-258.
14. Ch. A. McCarthy, 1975. The Cayley-Hamilton theorem, Amer. Math. Monthly, 8(4): 390-391.
15. Faddeev, D.K. and I.S. Sominsky, 1949. Collection of problems on higher algebra, Moscow.
16. Faddeeva, V.N., 1959. Computational methods of linear algebra, Dover, New York Chap., pp: 3.
17. Faddeev, D.K., 1963. Methods in linear algebra, W. H. Freeman, San Francisco, USA.
18. Gower, J.C., 1980. A modified Leverrier-Faddeev algorithm for matrices with multiple eigenvalues, Linear Algebra and its Applications, 31(1): 61-70.
19. Helmberg, G., P. Wagner and G. Veltkamp, 1993. On Faddeev-Leverrier's method for the computation of the characteristic polynomial of a matrix and of eigenvectors, Linear Algebra and its Applications, 185: 219-233.
20. Shui-Hung Hou, 1998. On the Leverrier-Faddeev algorithm, Electronic Proc. of Asia Tech. Conf. in Maths.
21. Shui-Hung Hou, 1998. A simple proof of the Leverrier-Faddeev characteristic polynomial algorithm, SIAM Rev., 40(3): 706-709.
22. López-Bonilla, J., J. Morales, G. Ovando and E. Ramírez, 2006. Leverrier-Faddeev's algorithm applied to spacetimes of class one, Proc. Pakistan Acad. Sci. 43(1): 47-50.
23. Caltenco, J.H., J. López-Bonilla and R. Peña-Rivero, Characteristic polynomial of A and Faddeev's method for A^{-1}, Educatia Matematica, 3(1-2): 107-112.
24. López-Bonilla, J., H. Torres-Silva, S. Vidal-Beltrán, 2018. On the Faddeev-Sominsky's algorithm, World Scientific News, 106: 238-244.
25. Lanczos, C., 1950. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, J. Res. Nat. Bureau Stand., 45(4): 255-282.
26. Hanzon, B. and R. Peeters, 1999-2000. Computer algebra in systems theory, Dutch Institute of Systems and Control, Course Program 1999-2000.
27. Cruz-Santiago, R., J. López-Bonilla and S. VidalBeltrán, 2018. On eigenvectors associated to a multiple eigenvalue, World Scientific News, 100: 248-253.
28. López-Bonilla, J., D. Romero-Jiménez, A. ZaldívarSandoval, 2015. Laplace transform of matrix exponential function, Prespacetime Journal, 6(12): 1410-1413.
29. Brown, L.S., 1994. Quantum field theory, Cambridge University Press.
30. Curtright, T.L. and D.B. Fairlie, 2012. A Galileon primer, arXiv: 1212.6972v1 [hep-th] 31 Dec. 2012.
31. Ch A. McCarthy, 1975. The Cayley-Hamilton theorem, Amer. Math. Monthly, 8(4): 390-391.
32. Sylvester, J.J., 1883. On the equation to the secular inequalities in the planetary theory, Phil. Mag., 16: 267-269.
33. Buchheim, A., 1884. On the theory of matrices, Proc. London Math. Soc., 16: 63-82.
34. Higham, N.J., 2008. Functions of matrices: Theory and computation, SIAM, Philadelphia, USA.
35. Higham, N.J., 2014. Sylvester's influence on applied mathematics, Maths. Today, 50(4): 202-206.
36. Buchheim, A., 1886. An extension of a theorem of Professor Sylvester's relating to matrices, The London, Edinburgh, and Dublin Phil. Mag. and J. Sci. 22(135): 173-174.
37. Aguilar, C., B.E. Carvajal and J. López-Bonilla, 2010. A study of matrix exponential function, Siauliai Math. Seminar (Lithuania), 5(13): 5-17.
38. Collar, A.R., 1978. The first fifty years of aeroelasticity, Aerospace Royal Aeronautical Soc. Journal, 5: 12-20.
39. Frazer, R.A., W.J. Duncan and A.R. Collar, 1938. Elementary matrices and some applications to dynamics and differential equations, Cambridge University Press.
