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Abstract: We show the relationship between the Daubechies polynomials and the modified Legendre
polynomials.
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INTRODUCTION
The wavelets are very important in science, engineering and technology [1-4], in particular, the construction
of Daubechies wavelets [5] depends strongly from the zeros of Daubechies polynomials d;(x) [6, 7], thus it is
interesting to study the properties of these polynomials because their behavior gives useful information on the
corresponding wavelets. Here we show that the analysis of d; (x) may be guided through the modified Legendre
polynomials P;"(x) [8-18], therefore a better understanding of Daubechies polynomials can be obtained via the
Legendre polynomials.
The shifted Legendre polynomials [13], for x ¢ [0,1]:
Py =1, Pf =1 - 2x, P; =1—6x + 6x2, Py =1-—12x + 30x% — 20x3,
(1
P; =1—20x +90x? — 140x% + 70x*, Pz =1—30x + 210x% — 560x> + 630x* — 252x°, ...
Are solutions of the differential equation:

x(1-x)y —QRx—-1Dy +l(l+1)y=0, ()

And they can be generated via the expression:

P;(x) = Xhop (—1)F (]lc) (‘ B ak, 1=01,23,. 3)

Or in terms of the Gauss hypergeometric function [11, 12, 19, 20]:
Pr(x) = ,F(=L1+1;1;x). 4

We can indicate similarities between the shifted Legendre and Daubechies polynomials, in fact, in (2) we
realize a simple change into the coefficient of y:

x(1-x)y —QRx+Dy +1l(l+1)y=0, (5)
Then it is nice to discover that the Daubechies polynomials [6, 7]:

dy =1, d, =1+ 2x, d, =1+ 3x + 6x2, dy =1+ 4x + 10x? + 20x3,
(6)
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d, =1+ 5x +15x% + 35x3 + 70x*, ds =1+ 6x +21x? + 56x3 + 126x* + 252x5, ...
Are solutions of (5).

Fig. 1 shows the polynomials (6), where only we can see their real roots; in general, their zeros are
complex, for example, the roots of dg are (0.1411 + 0.3421 1), (-0.1246 + 0.2832 1), (-0.2665 + 0.1073 i) and
their conjugates. Besides, there we note that d;(0) = 1 and d;(x) > 0 if x > 0, thus the real zeros are negative.
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Fig. 1: Daubechies polynomials

The d; are very important in the construction of the compactly supported Daubechies wavelets. There is a
close relationship between the zeros of d; and the 21 filter coefficients h(l) of the Daubechies wavelets D,; [6],
therefore, it is fundamental to search efficient algorithms to find the roots of Daubechies polynomials, especially
for large /. Here we show certain connections between (1) and (6), and then we hope that the stored experience
with the roots of Legendre polynomials may be useful in the analysis of the zeros of (6).

It is easy to find the corresponding modification of (4):

di(x)=1lim,; , ,FF-LI+1-l+4x), 0<A1<1, @)

Hence (3) adopts the known form [6, 7]:

vl l+k k
di(x) = Bheo (1 7) 2 ®)
Thus, in the equation:
x(1-x)y —QRx+a)y +1(l+1)y=0, 9)
We have two cases of interest:
Pl*' a = _1,
y(x) = ) (10)
dl , a= l,
With the Rodrigues formulae:
. 1 dl 1 dl -1 21+1
PP =2 S x(1-0],  d@) =1 S (11

Which generate to (1) and (6). The expression:
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1
(1+1)!

[b+1+ (1 -b)(-DY e+ L[, (12)

y(x) = ! b
Reproduces the relations (11) for b = —I and b = 1, respectively.

From (8) we obtain the relations:

d() = Sheo dyex®, dye= (! J;{") . k=0,1,.,1 (13)

Then it is immediate to deduce that:
le = 1, d” =2 dl,l—l ) dlj = Z{,_:O dl—l,k ) _] = 1, ey l - 1, (14)

This means that the coefficients of d;_;(x) allow to construct the next d;(x); we note the following
property of Daubechies polynomials:

1-0)"d(x) +x"1d(1—x) = 1. (15)

The shifted Legendre polynomials verify the three-term recurrence relation [18, 21]:

+D)P L )=QL+ 1A —-2x) P (x) - L P, (x), (16)
Which implies their orthogonality:
1 * * 1
Jo Pre) Pi(x) dx = —— &y, 17

However, the d;(x) are not orthogonal polynomials because they don’t satisfy a three-term recurrence
expression.
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