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Möbius Mapping via 3-Rotations and Lorentz Transformations
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Abstract: We exhibit that the Lorentz transformations and the 3-rotations generate Möbius mappings in the
complex plane.

Key words: Lorentz transformations  Cayley-Klein parameters  Möbius mapping  Riemann sphere

INTRODUCTION

The stereographic projection establishes a correspondence between the points of the unit sphere and those of the
Argand plane [1-3]:

Fig. 1: The unit sphere is projected stereographically from its north pole to the complex plane through its equator.

thus it is easy to see that:

(1)

Under an arbitrary 3-rotation about the origin, each point of the sphere is mapped into another point on the sphere,
hence via the stereographic projection a rotation determines  a  transformation  of  the complex onto itself. In fact, such
three-dimensional rotation is given by [4, 5]:
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(2)

where the complex numbers  and  are the Cayley- (7)
Klein parameters [6] with the constraint
Therefore:

(3) centre of a sphere K with radius , then (7) means

which  is  a  Möbius mapping [7] first obtained by called ‘transformation by reciprocal radii’ [7, 9, 15-17].
Gauss [8, 9], that is, the most general rotation of the
Riemann sphere can be expressed as a Möbius Remark 2: The null vector (x ) = (x , x, y, z) has
transformation of the form (3). associated the Cartan spinor [18]:

It is more convenient to employ . By contrast
with , the variable  defines an orientation on the
complex plane that coincides with that induced by the
orientation of the sphere under the stereographic (8)
projection [2].

Now we consider a null cone with vertex in (0, 0, 0) where x  > 0 and x  + z = (x + iy) and it is the product
for t = 0, then a slice of it at the time t  > 0 gives a of two simple spinors:0

sphere of radius x  = ct , which can be projected as in0
0

the Fig. 1, thus:

(4) (9)

and under an arbitrary Lorentz transformation [10, 11]:

(5)

with the condition  –  = 1 we obtain again a
Möbius mapping:

(6)

which has connection with special relativity [12];
Coxeter [13] comments that this connection was
observed by Liebmann [14]. Thus, the complex
mappings that correspond to the Lorentz rotations are
the Möbius transformations with 6 degrees of freedom.

Remark 1: In Fig. 1 we have the relations:

If we take the north pole of the Riemann sphere as

that the point B is the inversion in K of the point A. We
may remember that the ‘inversion in a sphere’ also is

µ 0

0 0

that is,  and

, therefore:

(10)

the stereographic projection is the quotient of the
complex components of spinor , in other words,A 1

and  are homogeneous coordinates of  [9, 19]. Hence2

a pair of projective scalar  and  determine a unique1 2

point of the light-cone at each point of space-time; each
value of the ratio /  determines a line of the cone.1 2

The homogeneous coordinates were invented by
Möbius (1827) and Plücker (1830) [20].

Remark 3: The Riemann sphere permits a geometric
interpretation of spin states for the electron and photon
[21-23].
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