
2

3 4 5

1y( ) 1 (42 887 122 1 012 427 712 
26 442 910 625

           13 794 322 304 9 264 926 976 6 901 011 968 ).

x x x

x x x

= + − +

− +

*( )T xk

( ) ( ),  0,1,2,...m
m mDQ x x R x m= + =

j
Qm

j
Rm j

Qm

1 2{ , ,..., },sS m m m=

Computational and Applied Mathematical Sciences 31 (2): 15-17, 2018
ISSN 2222-1328 
© IDOSI Publications, 2018
DOI: 10.5829/idosi.cams.2018.15.17

Corresponding Author: Dr. J. López-Bonilla, ESIME-Zacatenco, Instituto Politécnico Nacional, 
Edif. 5, 3er. Piso, Col. Lindavista CP 07738, CDMX, México. 

15

An Application of the Tau Method

R. Cruz-Santiago, C. Hernández-Aguilar and J. López-Bonilla

ESIME-Zacatenco, Instituto Politécnico Nacional, Edif. 5,
3er. Piso, Col. Lindavista CP 07738, CDMX, México

Abstract: We exhibit that the traditional formulation of the tau method is useful for the problems proposed 
 by Issa-Adeniyi, hence it is not necessary to employ a complicate reformulation of this Lanczos process to
construct polynomial solutions of ordinary differential equations.

Key words: Lanczos-Ortiz canonical polynomials  Tau technique

INTRODUCTION analysis in [0,1] then the tau method remains unaltered,

Issa-Adeniyi [1] introduces a reformulation of the tau Chebyshev  polynomials  [14,  15]   instead  of the
method [2-9] to obtain numerical solutions of certain class
of problems in ordinary differential equations, for example,
to solve:

y' – x  y = 0, y(0) = 1, (1)2

and with their procedure they construct the following
polynomial solution of 5  order:th

(2)

Here   we   exhibit that with the usual version of the
tau method is possible to study (1) and to give an
alternative polynomial solution of fifth order simpler than
(2).

The Tau Method: The Lanczos method can be
successfully applied to linear differential equations of
arbitrary order, with the only condition that their
coefficients have to be polynomials, with certain
boundary conditions, in [-1,1] (strictly speaking this is not
a restriction, since a change of scale can always be made)
due to the fact that  the   Chebyshev   polynomials T (x)j

[10-13] vary uniformly in the whole interval; if we make the

because it is only necessary to employ the modified

T  Let us consider the problem:k*

Dy(x) = 0, (3)

such that D is a linear differential operator of order , with
the initial conditions:

y (0), k = 0,1, ..., a – 1 (4)(k)

In the next step the Lanczos-Ortiz canonical polynomials
Q  [2, 14, 16-19] are constructed, with the importantm

clarification that m does not necessarily refer to the
polynomial order:

(5)

where the R  are known as residual polynomials. It ism

important to note that there can exist certain values m ,1

m , ... m , for which the prescription (5) does not work,2 s

namely, for which it is not possible to construct the pair 

and  verifying (5). In these cases, the  are known

as indefinite polynomials and it is convenient to introduce
an ensemble S that contains such pathological values:

(6)
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on the other hand, all the residual polynomials are linear differential operator D and also of the cardinality of S, i.e.
combinations of the different powers of the number of the indefinite  canonical   polynomials.

(7)

note that in (7) we have k m  because the  arej

indefinite.
Here it is accepted that the original problem (3) does

not have exact polynomials solutions, which excludes the
existence of multiple canonical polynomials. For instance,
if two different polynomials Q  and Q  provide the samea b

power   of   x,   Dq    = Dq  = x , then D(Q  – Q ) = 0 anda b a b
p

Q  – Q  will be a polynomial solution of (3). It is possiblea b

to give the corresponding extension of the method in the
case in which (3) allows exact polynomial solutions.
Subsequently, Lanczos proposes to replace the zero in (3)
for a small perturbation:

(8)

where H  is a n-degree polynomial and  is an exactn

polynomial solution subjected to the same boundary
conditions (4):

(9)

which in turn, is a good polynomial approximation for the
problem (3), with an error uniformly distributed in [-1,1],
we can achieve this last property if H  is written in termsn

of Chebyshev´s T :k

(10)

notice the presence of the (r+1) parameters  that thej

algorithm itself allows to determine and whose
magnitudes are small because H  should not deviate muchn

from the zero of the right hand side of (3). Therefore, the
quantity   of   parameters  depends on the order  of thej

On the other hand, the Chebyshev polynomial that
appears in (10) can be written in the following form:

(11)

its corresponding coefficients c  are data that take part ink

different equations of the tau method.
Then, we can express the exact polynomial solution

of (8) as:

(12)

note that (m + i) does not belong to (6)  (m + i) m , j =j

1, ..., s. If we impose in (12) the boundary conditions (9),
we obtain the constraints:

(13)

and the substitution of (12) into (8) provides the relations:

(14)

In (13) there are  conditions, meanwhile (14) implies
s constraints (because we should equal the coefficients of
the different powers x  to zero, whose q-values are allq

contained in S), making a total of  + s = r + 1 algebraic
equations to compute the (r + 1) parameters r , beingj

therefore (12) completely determined. It should be
emphasized that n is a datum, because it can be decided
(depending on the problem under analysis) the order of
the perturbation and therefore the tau process provides
an exact solution for (8) and (9). Note that the order of

 is not necessarily equal to n, in fact, this depends on

the structure of the differential operator D.
If this process of Lanczos is applied to (1), that is, to

(8) with n = 7, we obtain the quantities:

  and Q  are indefinite,1

(15)
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with the exact solution of (8):

(16)

which is an approximate solution of (1) and simpler 10. Chebyshev, P.L., 1854. Théorie des mécanismes
than (2). connus sous le nom de parallélogrammes, Mém.

A similar process can be applied to the several Acad. Sci. Pétersb., 7: 539-568.
problems proposed by Issa-Adeniyi [1], without to modify 11. Lanczos, C., 1952. Chebyshev polynomials in the
the usual tau method. solution of large-scale linear systems, Toronto
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