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On the Bernoulli’s Differential Equation
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Abstract: It is well known that the Bernoulli’s differential equation has the form Y  + p(x) Y = q(x)Y  where  is
a fixed real number. In this paper, under certain conditions, we give a generalization of this equation when we
change  for an adequate function r(x).

Key words: Bernoulli equation  Ordinary differential equation

INTRODUCTION (3)

It is well known the Bernoulli’s differential equation and
and how to solve it, which is given by [1-5]:

(1)

where  is a fixed real number. In this work, we shall study
the differential equation: (5)

(2)

for certain functions p(x), q(x) and r(x). For this, first we
will see some types of differential equations with the (6)
structure:

for all n  1 and m  0. We define: 

as we can see in Theorem 1. A solution y = y(x) of the
previous differential equation shall be represented by a for all m  1. Thus, we have: 
series of powers, as in (4).

In reality, we will assume that all functions can be Theorem 1: Under the above conditions and notations,
expanded in series of powers on an interval I = (– t, t), we have that y is solution of the differential equation:
with t > 0 and all the products between them will be
convergent. Therefore, we will not bother to mention this. (8)

Solution of a Differential Equation Expressed in Series of if and only if the coefficients of the representation of y as
Powers: Let {f }  and y functions. We write for each n series of powers in (4) satisfy that b  = y(0) and for eachn n 0

0: m  0:

(4)

Then, using the Cauchy product, we obtain:
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(9) a series absolutely convergent. We suppose that f  and f

Proof: We have that y is solution of (8) if and only if it (13)
holds:

Then, y is solution of the differential equation:

that is, if and only if we have: it , t), that is f  is given as (3) such.

Hence, y is solution of the differential equation (8) if for each l  0 (n  2). Then, applying the Theorem 1, we
and only if: obtain (15) from (9).

Example 3: In the conditions and notations of Corollary

for all m  0, where each c  is given as in (6). Thisn,m–k

completes the proof. (17)

In particular, from (9) we have that b  = y(0),c

(10) (4) are given by b  = y(0) and for each m  0: 

and

(11) (18)

Corollary 2: Let f , f  and g functions and: conditions and notations of the Section 2. Also, we write:0 1

(19)

(12) thus, we have:

0 1

are given as in (3) and we write:

(14)

if and only if the coefficients of the representation of y as
series of powers in (4) are given by b  = y(0) and for each0

m  0; 

(15)

Proof: We define for each n  2, f (x):=a g(x) for all x  (–n n

n

 that: 

a  = a u , (16)n,l n l

2, we have that y is solution of the differential equation: 

if and only if the coefficients of the representation of y in
0
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Theorem 4: We asume |y (x) – 1| < 1 for all x . (– t, t)
Then y is solution of the differential  equation:

(20) constant on I, then the differential equation is the

if and only if the coefficients of y in its representation of
series of powers in (4) are given by b  = y(0) and, for each Thus, under the substitution:0

m 0, b  is given by the equation (15) of Corollary 2,m+1

where for each n  2: u = y (27)

(21) we have the relationship:

with ln(u) = (1 – r(x)) ln (y). (28)

(22) differential equation (2), we obtain:

Proof: We have that: 

(23) (29)

because |y (x) – 1| < 1 for all x  (– t, t). Hence:

(24)

such that: We note that the equation (30) establishes that u is

r(x)) and g(x) = – r (x)/(1–r(x)). Therefore, we know how
is given the function u (Theorem 4). But, as u = y

Then, the differential equation in (20) is equivalent to
the following equation: Theorem 5: We assume that |r(x)| < 1, for all x  (– r, r).

(25) generalized differential equation if and only if: 

where:

(26) (31)

therefore, the affirmation is followed from Corollary 2. 

Bernoulli’s Generalized Differential Equation: We
consider Bernoulli’s generalized differential equation (2),
that is: and each  is given by the equation (22). 

where r(x) 1 for all x I. We note that when r(x) is

standard differential equation of Bernoulli.

1–r(x)

Using the equation (28) and Bernoulli’s generalized

or equivalently:
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solution of the differential equation given in Theorem 4,
equation (20), where f (x) = (1–r(x)) q(x), h(x) = – p(x) (1 –0

1–r(x)

(equation (27)), then we have:

The function y given in (4) is solution of the Bernoulli’s

where for all k  0:

(32)
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Proof: By the equation (27), we have: REFERENCES
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