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Stability Analysis of Predatorprey Model with
Ratio-Dependent Functional Response
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Department of Mathematics, Madda Walabu University, Bale Robe, Ethiopia

Abstract: This  paper  concerns  with  a  two  dimensional  nonlinear  dynamical  predator-prey  model with
ratio-dependent functional response. Dynamical analysis involving determination of equilibrium points on their
local stabilities is presented. 
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INTRODUCTION Holling type II functional response by ratio-dependent

Predator-prey behavior is a form of very common with is;
biological interaction in nature. Mathematical model for
predator-prey interaction is studied originally by Lotka [1]
and Volterra [2] and is known as Lotka-Volterra model.
The model is only consider four factors such as growth
rate of prey, predation rate, mortality rate of predator and (1)
conversion rate to change prey biomass into predator
reproduction. Notice that all of the rates are linear. where X represents prey density, Y is predator density, r
However, in the real life, predator-prey interaction does and s are growth rate of prey and predator respectively, K
not depend only on those factors. Therefore, much and K  represent carrying capacity of prey and predator
developments of the model are proposed based on respectively, a is parameter of capturing rate predator on
biological assumptions in the real life. prey, 1/b is Michaelis-Menten constant and c represents

According to some biologists, such as Arditi and conversion rate to change prey biomass into predator
Ginzburg [3], ecological functional response should reproduction.
depend on the density of prey and predator, since
predators occasionally have to search and compete for Equilibria: The possible equilibrium points of system (1)
the prey. One of the functional responses which depend are E  (0, K ), E  (K , 0) and E  (X , Y ) where
on the density of prey and predator is ratio-dependent
functional response (see Xiao and Ruan [4], Edwin [5]).  or  and
Therefore, in this paper we concern with dynamical
analysis of predator-prey model with ratio-dependent
response function. It is assumed that prey as well as
predator grows logistically, since predator has other food
source besides prey. Hence, the predator has two growth
rate, namely logistic and predation growth. In order to
control the amount of predator population, it is assumed
that a linear rate of harvesting is applied to predator Here,
population.

The Model: Predator-prey model in this paper modifies the
model discussed by Kar and Chaudhuri [6] by replacing

functional response. Hence, the model that we concern
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 and Since , equilibrium point E is unstable.

Proposition 1: Equilibriumpoint E3(X*, Y*) exists if one of
the following conditions satisfied.

r > a, (2)

or

r < a , B< 0 and D>0, (3)

or

r = a and (4)

Remark: X  and Y  satisfies the following equations.* *

(5)

and

(6)

Local Stability Analysis: Stability of equilibrium points is
investigated by doing linearization on thesystem (1)
around each equilibrium points. 

Theorem 4.1: The equilibrium point E  (0, K ) is locally1 2

asymptotically stable if r < a.
Proof: At E  (0, K ), the Jacobean matrix becomes 1 2

Jacobian matrix of E  has negativeEigen value for r < a.1

Hence E  (0, K ) is locally asymptotically stable if r < a1 2

and unstable if r > a.

Theorem 4.2: The equilibrium point E  (K , 0) is unstable.2 1

Proof: At E  (K , 0), the Jacobean matrix is2 1

2

Theorem 4.3: The equilibrium point E  (X , Y ) is locally3
* *

asymptotically stable provided  > 0  and

 < 0 Where  = xw – yz and 1 = x + w.

Proof: AtE  (X , Y ), the Jacobean matrix becomes3
* *

where

.

It is clear that y < 0 and z > 0. By substituting (6) into
w, it is readily seen that w < 0. Under condition (2) and (4),
by substituting (5) into x, we get  whereas

under condition (3), x can be negative or positive. For
condition (2) and (4), theorem 4.3 is fulfilled because x, y
and w are negatives and z > 0. Hence, E  (X , Y ) islocally3

* *

asymptotically stable if condition (2) or (4) satisfied.

CONCLUSION

The model of predator-prey ratio-dependent
response function is a system of two-dimensional
nonlinear ordinary differentialequations. The system has
three equilibrium point, namely the prey extinction point
E  (0, K ), the predator extinction pointE  (K , 0) and the1 2 2 1

survival pointE  (X , Y ). Based on the analysis, E  (K , 0)3 2 1
* *

is unstable. While, E  (0, K ) and E  (X , Y ) are local1 2 3
* *

asymptotically stablewith certain conditions.
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