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Prey-Predator Model with Holling-Type II and
Modified Leslie-Gower Schemes with Prey Refuge
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Abstract: A predator-prey system with Holling type II functional response and modified Leslie–Gower type
dynamics incorporating constant proportion of prey refuge compared by considering the model without prey
refuge. In both cases condition for local asymptotic stability of positive equilibrium point of the system is
discussed by non-dimensionalize the system and global asymptotic stability is proved by defining appropriate
Dulac function. Numerical simulations are also carried out to verify the analytical results.
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INTRODUCTION the  prey  can  take refuge to avoid predation, this leaves

The dynamic relationships between species and their Y (t) represent the population of the prey and predator
complex properties are atthe heart of many ecological and species at any time t. The main feature of the model is that
biological processes [1]. As was pointed out by [2]; mite the  interaction  of  species affects both populations.
predator–prey interactions often exhibit spatialrefugia Terms representing logistic growth of the prey species in
which afford the prey some degree of protection from the absence of the predator are included in the prey
predation and reducethe chance of extinction due to equations. The model has two non-linear autonomous
predation. In [3], Tapan Kumar Kar had considereda ordinary differential equations describing how the
predator–prey model with Holling type II response population densities of the two species would vary with
function and a prey refuge.The author obtained time.
conditions on persistent criteria and stability of the Thus, the model under the assumption with Holling
equilibriaand limit cycle for the system. For more works on type II functional response and the modified Leslie-Gower
this direction, one could refer to [4, 5] and the references type predator dynamics is given by:
cited therein.Such system has been investigated by
several researchers. In particular, the roundedness of
solutions and global stability of the positive equilibrium
points of the system has been studied by [6]. Sufficient
conditions for the existence and global attractively of
positive periodic solutions of the model were discussed (1)
by [7].

Although many authors have considered the where  all  the  parameters  in  the  model  assumes
dynamic behaviors of the modified Leslie–Gower model positive  values  and  with  initial  value  X  (0)   0 and
[8-10] and predator–prey with a prey refuge as fares we Y(0)  0.
know, there are almost no literatures discussing the This two species food chain model describes a prey
modified Leslie–Gower model with a prey refuge. population x which serves as food for a predator y. The

The Mathematical Model: The model considered is based only positive values. These parameters are defined as
on the assumption that a constant proportion m  [0,1] of follows:

(1 – m)X of the prey available for predation. Let X (t) and

model parameters r, s, K, k , k , c  and c  are assuming1 2 1 2
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r is per capita intrinsic growth rates for prey, s is gives the Therefore, we have ,
maximal per-capita growth rate of predator, K is the
carrying capacity of the environment, k  (respectively, k )1 2

measures the extent to which environment provides
protection to prey x (respectively, to the predator y), c  is Hence, the solutions (x(t), y(t)) of the system (2) with1

the maximum value which per capita reduction rate of prey the given initial conditions are bounded. 
and c  is the crowding effect for the predator [11-13].2

The following non-dimensional state variables and Nonnegative Equilibria: Obviously, (2) has three
parameters are chosen. boundary equilibrium, E (0, 0), E  (1, 0)  and.

The     system       (1)      takes   the    following non-
dimensional  form.

(2)

Lemma 1: All the solutions (x(t),y(t)) of the system (2) are
nonnegative. That is x(t)  0 y(t)  0 for all t  0.

Lemma 2: All  the  solution (x(t), y(t)) of the system (2) is
bounded.

Proof: The first equation of (2) gives us;

Therefore,  hence, x(t) is always bounded.

Similarly,

0 1

Besides these equilibrium points the system (2) has one
positive equilibrium points, say

E (x , y ) is obtained by solving the following3
* *

simultaneous equation.

One can easily see that x  satisfies the quadratic equation.*

where, A = (1 – m) , B = m  + (  – 2 ) m +  +  –2

, C = m – 

Stability Analysis
Local Stability: The local asymptotical stability of each
equilibrium point is studied by computing the Jacobean
matrix and finding the eigenvalues evaluated at each
equilibrium point. For stability of the equilibrium points,
the real parts of the eigenvalues of the Jacobean matrix
must be negative.

Theorem 1: The trivial equilibrium E is unstable.0

Proof: At E (0, 0), the Jacobean matrix becomes,0

Thus, the  eigenvalues  of  this matrix are  = 1 and1

 = , both are positive, which shows that the trivial2

equilibrium is locally asymptotically stable.

Theorem 2:  The  equilibrium  point E (1,  0)  is also1

unstable.
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Proof: The Jacobean matrix becomes

The eigenvalues are  = – 1 < 0,  =  > 0 asymptotically stable provided .1 2

Thus the equilibrium point E1(1, 0) is unstable saddle
point.

Theorem 3: The equilibrium point  as locally Theorem 1: The system (2) does not admit any periodic

asymptotically stable if  .

Proof: At , the Jacobean matrix is;

The eigenvalues of the matrix J(E ) are ,2

 = –  < 02

For E  to be locally asymptotically stable, we should2

have  < 0, This is true for  .1

Theorem 4: The dynamic system (2) has E (x , y ) as3
* *

locally asymptotically stable if

Proof: At E (x , y ), the Jacobean matrix takes the form* * *

Thus, trace(J(E ))< 0 if and only if*

.

Hence, the equilibrium point E  is locally*

Global Stability

solution for m > 1 – .

Proof: Let (x(t), y(t)) be solutions of the system (2.2).
Define Dulac function

Then,

It is observed that Q < 0 for m > 1. Therefore, by
Dulac criterion, the system (2) has no non-trivial periodic
solutions.

Corollary 1: If m > 1 –  then the local asymptotical
stability of the system (2.2) ensures its global
asymptotical stability around the unique positive interior
equilibrium point E  (x , y ).* * *

Section TWO
The Model Without Prey Refuge

Consider when m = 0 that is, there is no prey refuge: 
Here it is assumed that all the preys are accessible to

the predator species, our mathematical model (2) becomes,

(3)

where all the parameters in the model are positive.
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The following non-dimensional state variables and Numerical  Simulation:  In  this  section  we  will  solve
parameters are chosen. the system equation (2) and (4) by using the in-built

ordinary differential equation solver Matlab function

The system (3.1) takes the following non-dimensional existence and stability properties of the equilibrium for the
form, system.

coexistence equilibrium point exists for m > 0.5. Hence, in

(4) parametric values as fixed and the parameter  as a control

Equilibrium Points: We now study the existence of For these set of parametric values the coexistence
equilibrium of system (4). All possible equilibrium is; equilibrium point exists whenever  < 0.1. The coexistence

The trivial equilibrium E  (0, 0) 0.651234 and hence unstable otherwise.0

Equilibrium in the absence of predator (y = 0) E  (1, 0) Figures 5-7 shows the stability of the coexistence1

Equilibrium in the absence of prey (x= 0) equilibrium point. That is; the solution, trajectory, of the

The interior (positive) equilibrium E (x , y ) where x equilibrium point. 3
* * *

is the unique positive root of the quadratic equation

where B =  +  – , C =  – 

Theorem: The system (4) does not admit any periodic
solution for  > 1.

Proof: Let (x(t), y(t)) be solutions of the  system  (4).
Define Dulac function. Fig. 1: Times series plot of prey and predator at m=0.55

Then,

It is observed that Q < 0 for  > 1. Therefore, by
Dulac criterion, the system (4) has no non-trivial periodic
solutions. Fig. 2: Time series plot of prey and predator at m=0.6

ode45.
For solving system (2), we took the following

parametric values  = 1,  = 0.2,  = 0.2,  = 0.1,  = 0.2.
For these  values  of  parameter,  we  simplify  the

For the given parametric values, it is found that the

our simulation we took the values of m in the range 0.5 <
m < 1.

For the system equation (4), that is the system in the
absence of prey refuge, we have used the following

parameter. These values are  = 1,  = 0.2,  = 0.1,  = 0.2.

equilibrium point is locally asymptotically stable for <

prey and predator species approaches to the coexistence
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Fig. 3: Time series plot of prey and predator at m=0.8

Fig. 4: Time series plot of prey and predator at m=0.95

Fig. 5: Series plot of the prey and predator at  = 0.02

Fig. 6: Time series plot of prey and predator at  = 0.04 the instability of the coexistence equilibrium point [12, 13].

Fig. 7: Time series plot of prey and predator at  = 0.06

Fig. 8: Phase portrait of prey and predator at  = 0.07

Fig. 9: Time series plot of prey and predator at  = 0.07

Fig. 10: Time series plot of prey and predator at  = 0.09

A Figure 8 shows the existence of a limit cycle,
periodic solution. Figure 9 also shows the oscillatory
nature of the predator prey system. Figure 10 represents
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CONCLUSION 3. Gonzalez-Olivares, E. and R. Ramos-Gilberto, 2003.

This paper presents a prey-predator model with model system: more prey, fewer predators and
Holling type II functional response and modified Leslie enhanced stability. Ecol Model.
Gower incorporating a constant proportion of prey refuge. 4. Hue, H., X. Wang and C. Chavez, 2011. Dynamics of
Incorporating a refuge into system (4) provides a more a stage-structured Leslie-Gower predator–prey
realistic model. Refuge, therefore, can be considered as, model, Math Problem 2011 (2011), Article ID 149341.
areas in which the predator is not successfully controlling 5. Kara, T.K., 2005. Stability analysis of a prey–predator
the prey and important for the biological control of a model incorporating a prey refuge, Common
predator. The main focus of this paper was to introduce Nonlinear Sci. Numer. Simul, 10(6): 681-691.
mathematical models of biological systems and 6. Kar, T.K., 2006. Modelling and analysis of a
techniques for their analysis. Local asymptotic stability of harvested prey–predator system incorporating a prey
the positive equilibrium implies its global asymptotic Refuge, J. Comput. Appl. Math, 185(1): 19-33.
stability. Moreover, we established some new results 7. Ko, W. and K. Ryu, 2006. Qualitative analysis of a
such as the existence of stable or unstable equilibrium predator–prey model with Holling type IIfunctional
points under suitable values of parameters in the models. response incorporating a prey refuge, J. Differ Eq.,
Two species can coexist in the case of stable condition; 231(2): 534-550.
otherwise they might be extinct in the case of unstable 8. Aziz-Alaoui, M.A. and M.D. Okiye, 2003.
condition. Boundedness and global stability for a predator-prey
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