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An Extended Hybrid Approach to Model Variability
and Uncertainty: Application in Risk Assessment
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Abstract: In any risk assessment model, the input parameters are usually tainted with one or other type of
uncertainty. When the uncertainty of random nature probability distribution is used for representing the input
parameters but when the uncertainty arises due to lack of information possibility distribution is appropriate for
its representation. In this paper, an effort has been made to propose a method for joint propagation of
probabilistic and possibilistic in any risk model where parameters of probability distributions are available in
the form of interval or fuzzy number.
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INTRODUCTION fractiles of risk as well as probability distributions of risk

The aspect of uncertainty is an important and integral Different hybrid method for joint handling of probability
to any risk assessment process. For any decision making and possibility distributions were presented in [5]. A
process involving risk the modelling and quantification of hybrid method to deal with both variability and
the uncertainties is required. The uncertainties are uncertainty within the same framework of computation of
basically two types viz., aleatory and epistemic. When risk was proposed in [6]. Dutta ([7-10]) also studied
some parameters are affected by aleatory uncertainty and probability-possibility distributions and their applications
other by epistemic uncertainty, how far computation of in risk assessments.
the risk, then one can either transform all the uncertainties In some situations parameters of probability
to one type or use some methods  for  propagation  of the distributions (i.e., mean and standard deviation) are
uncertainties. Many researchers have studied the issue of obtained in the form of interval or fuzzy numbers. In such
combining probabilistic and possibilistic representation of situations probability bounds approach is often used
variability and uncertainty respectively within the same which combines probability theory and interval arithmetic
computation of risk. For example, the hybrid method to produce probability-boxes (p-boxes). In particular,
proposed in [1] combines the random sampling of probability bounds analysis provides solution to the
probability distribution functions (PDFs) with fuzzy problems involving unknown dependencies between
interval analysis on the á-cuts. In order to compare variables and uncertainties in the exact nature of
random fuzzy set to a tolerance threshold authors distributions. Different authors proposed different
performed a post-processing of this result. Authors [2] methods to compute probability bounds. Chebyshev [11]
laid bare a shortcoming of this post-processing method described bounds on a distribution only when mean and
where it was showed how the theory of evidence, also standard deviation of the variable are known. Markov [12]
called theory of Dempster-Shafer (or theory of belief found similar bounds for a positive variable when only its
functions; Shafer, [3]) could provide a simple and rigorous mean is known. Frechet [13] proposed how to compute
answer to the problem of summarizing  the  results  of the bounds on probabilities of logical conjunctions and
hybrid computation for comparison with a tolerance disjunctions without making independence assumptions.
threshold. In the hybrid approach proposed [4] combined Yager [14] described the elementary procedures by which
utilization of fuzzy and random variables produces bounds on convolution can be computed an assumption
membership functions of risk to individuals at different of independence. At the same time, Authors in [15] solved

for various alpha-cut levels of the membership function.



( ) ( )

( ) 1 ( )
x A

c

A Sup x

A A
∈

Π = 

Ν = − 

... .1 2 3A A A An⊂ ⊂ ⊂ ⊂

( ) max( ( ), ( )), ,
( ) min( ( ), ( )), ,
A B A B A B R
A B A B A B R

Π ∪ = Π Π ∀ ⊆ 
Π ∩ = Π Π ∀ ⊆ 

,x a a x b
b a
−

≤ ≤
−

,x b b x c
c b
−

≤ ≤
−

10 ,10 20
10

x x−
≤ ≤

20 ,20 30
10

x x−
≤ ≤

African J. Basic & Appl. Sci., 8 (4): 193-197, 2016

194

a question posted by A. N. Kolmogorov about how to
finds bounds on distributions of sum of random variables
when no information about their interdependency was
available. Extending the approach of [15] Williamson and
Downs in [16] develop a semi analytical approach that
computes rigorous bounds on the cumulative distribution
functions of convolution without necessarily assuming
independents between the operands. Ferson and Hajagos
[17] gave method to compute probability bounds. Dutta
and Ali [18] proposed a method to construct probability
bounds when parameters of probability distribution viz.,
mean and standard deviation (variance) are available in Fig. 1: Possibility and necessity measure of the fuzzy
the form of interval or fuzzy number. number A

In this paper, we propose an extended hybrid
approach to deal with both variability and uncertainty If focal elements are nested then  satisfies the
where parameters of probability distributions are available following conditions:
in the form of interval or fuzzy number.

Possibility Theory: Possibility theory normally associated
with some fuzziness, either in the background knowledge
on which possibility is based or in the set for which For triangular (trapezoidal) fuzzy numbers, possibility
possibility is asserted. This constitute a method of and necessity measures are straight lines. For example, if
formalizing non-probabilistic uncertainties on events i.e., a continuous possibility distribution is a triangular fuzzy
a mean of assessing to what extent the occurrence of an
event is possible and to what extent we are certain of its
occurrence, without knowing the evaluation of the
possibility of its occurrence.

A possibility distribution [19] denoted by , here is
a mapping from the real line to the unit interval, unimodal
and upper semicontinuous. A possibility distribution
describe the more or less plausible values of some
uncertain variable X. Possibility theory provides two
evaluations of the likelihood of an event, for instance that
the value of a real variable X should lie within a certain
interval: possibility  and the necessity N Possibility
measure  and necessity measure N are define

where A  is the complement of A.c

Possibility theory can also be considered as special
branch of evidence theory that deals only with bodies of
evidence whose focal elements are nested. Events are
called as nested if  terms belief and
plausibility measures in context of possibility theory are
called as necessity measure and possibility measure
respectively.

number say, [a, b, c] thenpossibility measure is given by 

and necessity measure is given by .

In particular, consider a fuzzy number A = [10, 20, 30].
Then the possibility measure of the fuzzy number A is

 and necessity measure of the fuzzy number

A is and which are depicted below in

Figure 1.

Sampling Technique for Possibility Theory: Here first
uniformly distributed random numbers between 0 and 1
are generated. Random variables of given uncertainty are
generated by equating these numbers to necessity
function and possibility function. Two numbers are
generated in this process, one corresponding to necessity
function and the other corresponding to the possibility
function. This process is repeated for all the uncertainty
variables present in the model.

For a uniformly distributed random number u the
uncertain variable x  having necessity function Nec(x )n n

and uncertainty variable x having possibility functionp

Pos(x ) are obtained asp

x  = Nec (u) and x  = Pos (u).n p
1 1
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For example, for the fuzzy number A= [10, 20, 30] the Proposed Extended Hybrid Approach: When models
possibility measure and necessity measure are depicted in parameters are tainted with variability and uncertainty
Figure 1. Now, for the uniformly generated random then hybrid approach comes into picture. Dutta and Ali
number say 0.6, the value of the random variable is 26 for [6] proposed a hybrid approach for combining probability
the necessity measure and 16 for the possibility measure. and possibility distribution functions within the same

Proposal for Construction of P-box: Lower and upper Carlo simulation and possibility theory in their method
probability can be constructed when parameters of and also independency between the parameters has been
probability distributions (Normal distribution, lognormal assumed. Here, we extend their [6] hybrid method by
distribution, triangular distribution, uniform distribution) incorporating that some parameters of probability
are not precisely known. Dutta and Ali [18] proposed a distributions are available in the form of interval or fuzzy
method to obtain lower and upper for symmetric numbers and also we have consider vertex method to
probability distributions where parameters of probability perform interval operations. 
distributions are available as closed intervals or fuzzy
numbers. If parameters are fuzzy numbers then they Consider a Model:
considered the support of the fuzzy number using 0-cut as
range of the variable. M = g (P , P . . . P  Q , Q ,...,Qr, F1, F . . . , F )

Suppose prodist indicates one of the probability
distribution i.e., normal distribution, lognormal which is a function of parameters where representations
distribution, triangular distribution, uniform distribution. of some parameters are probabilistic and some parameters
Let A be a prodist whose parameters are available in the are possibilistic (Fuzzy number) and some parameters of
form of intervals, mean [a, b] and standard deviation probability distribution are available in interval or fuzzy
(variance) [c, d]. The p-box for A has to be calculated by numbers. Suppose P , P . . . P are m parameters presented
taking all the combination such as (a, c), (a, d), (b, c) and by probabilistic distributions while Q , Q ,...,Q  are r
(b, d). Then the envelope over four distributions parameters presented by probabilistic distributions where
prodist(a, c), prodist(a, d), prodist(b, c) and prodist(b, d), mean and standard deviation are interval or fuzzy numbers
gives the resulting p-box for A. To obtain lower and upper and F , F . . . , F are n parameters presented by
probability, uniformly distributed random numbers in possibilistic distributions (Fuzzy numbers).
between 0 and 0.5 and in between 0.5 and 1 are generated
separately, as cumulative probability distributions of The approach is explained below:
symmetric probability meet at mean and 0.5 (i.e., at (mean, Generate m number of uniformly distributed random
0.5). numbers from [0, 1] and perform Monte Carlo

Algorithm for P-box: probability distribution.
Step 1: Generate N number of uniformly distributed Consider the r probability distributions where mean
random numbers in between 0 and 0.5 and N numbers of and standard deviation are available as interval or
uniformly distributed random numbers in  between  0.5 fuzzy numbers. Then, calculate lower and upper
and 1. probability using the technique given is section 4.

i.e., say r = unifrnd(0,0. 5,1,N) and s = unifrnd(0.5,1,1,N) numbers from [0, 1] and perform Monte Carlo

Step 2: Take the inverse of the cumulative distributions probability distribution. Here we will get n numbers
function. That is, of close intervals i.e., 2r numbers of random numbers

upper probability).

Step 3: Consider x = [x1, x2] and y = [y1, y2] and necessity measure defined as 

Step 4: Plotting of cumulative distribution function (cdf)
for x and y will give the resulting p-box for A.

framework of computation of risk. They used both Monte

1 2 m, 1 2 2 n

1 2 m

1 2 r

1 2 n

simulation to obtain random numbers by sampling

Generate r number of uniformly distributed random

simulation to obtain random numbers by sampling

will be generated (r for lower probability and r for

Consider the possibility distribution f: X? [0, 1] (i.e.,
fuzzy numbers). Then, we use possibility measure
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Table 1: Parameter values used in the risk assessment
Parameter Units Type of Variable Value/distribution
Concentration (C) mg/L Probabilistic Normal([0.14, 0.15, 0.16], 

[0.0005, 0.0006])
Intake rate(IR) L/day Probabilistic Normal(5, 0.001)
Exposure frequency (EF) Days/year Constant 350
Exposure Duration (ED) Years Constant 30
Average Time (AT) Days Constant 25550
Body Weight (BW) Kg Fuzzy [65, 70, 75]
Cancer slope factor (CSF) (mg/kg-day) constant 0.151

to obtain upper and lower probability.
Possibilistic Sampling: Generate n numbers of
uniformly distributed random numbers from [0, 1] and
perform Monte Carlo simulation to obtain random
numbers by sampling possibility distribution. Here
we will get n numbers of close intervals i.e., 2n
numbers of random numbers will be generated (n for
possibility measure and n for necessity measure).
Assign all m random numbers, r closed intervals and
n closed intervals in the model M. Then perform
arithmetic operation between the close intervals
using Vertex method. Output will be a single closed
interval.
Repeat step 1 to step 4 N times. So, we will have N
numbers of close intervals.
Consider M  and M , the collections of all initial and1 2

end points of the resulting intervals respectively.
Cdf plotting of M  and M  will give the upper1 2

probability and lower probability respectively.

In the following section we consider a synthetic
example to illustrate the use of our proposed method.

Case Study: To demonstrate and make use of the
extended proposed hybrid method a hypothetical case
study for cancer risk assessment is presented here.
Suppose water became contaminated due to the release of
radionuclide to the water. Need to calculate cancer risk for
the ingestion pathway.

The risk assessment model due to the ingestion of
radionuclides in water as provided by EPA, 2001 [22] is
follows

(1)

where C is concentration (mg/L), IR is the ingestion rate
(L/day), EF is the exposure frequency (days/year), ED is
exposure duration (years), BW is the body weight (kg), AT
is averaging time (equal to 70 years x 365 days/year) and
CSF is the cancer slope or potency factor associated with
ingestion (mg/kg-day)-1.

Fig. 2: Cancer Risk

Values of the parameters for the calculation of cancer
risk are given in the Table 1.

The result of the cancer risk assessment due to the
ingestion of radionuclides in water using equation (1) is
depicted in Figure (2).

In this study, representation the parameter
concentration (C) is considered as probabilistic
distribution having with mean [0.14, 0.15, 0.16] and
standard deviation [0.0005, 0.0008], intake rate (IR) is
taken as probabilistic distribution with mean 5 and
standard distribution 0.001while representation of the
parameter body weight (BW) is considered as triangular
fuzzy number and other parameters are considered as
constant. Using our proposed method to deal with both
type uncertainty natures in the risk assessment we have
the result in the form of lower and upper probability. From
these lower and upper probabilities, risk at different
fractiles ([4], [20] & [21] ) can be calculated and which are
obtained in the form of close intervals. For instance, at 95th

fractile cancer risk value lies in [6.174e-04, 7.519e-04].
Similarly, at 85  and 80  fractiles risk values lie in [6.121e-th th

04, 7.476e-04] and [6.095e-04, 7.452e-04] respectively.

CONCLUSION

In risk assessment, it is most important to know the
nature of all available information, data or model
parameters. More often, it is seen that available
information is interpreted in probabilistic sense because
probability theory  is  a  very  strong  and  well
established mathematical tool to deal with variability.
However,  not  all   available    information, data  or model
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parameters are affected by variability (i.e., nature of the 9. [#] Dutta, P., 2013. Combined Approach to Propagate
data, information or parameters are random) and can be Aleatory and Epistemic Uncertainty in Risk
handled by traditional probability theory. Imprecision may Assessment, International Journal of Mathematics
occur due to scarce or incomplete information or data, and Computer Applications Research, 3: 2249-6955.
measurement error or data obtain from expert judgment or 10. Dutta, P., 2013. An approach to deal with aleatory
subjective interpretation of available data or information. and epistemic uncertainty within the same framework:
Thus, model parameters, data may be affected by case study in risk assessment, International Journal
epistemic uncertainty. Fuzzy set theory or possibility of Computer Applications, 80(12): 40-45.
theory can be explored to handle this type of uncertainty. 11. Chebyshev [Tchebichef] P., 1874. Sur les valeurs
Sometimes, it is also seen that some model parameters are limites des integrales. J. Math Pure Appl., 19: 157-160.
affected by uncertainty and some parameters are affected 12. Markov [Markoff], A., 1886. Sur une question de
by variability then there is the need for joint propagation maximum et de minimum propose´e par M
of uncertainties. Dutta and Ali [6] proposed a method for Tchebycheff. Acta Math, 9: 57-70.
this. Sometimes the parameters of the probability 13. Fre´chet, M., 1935. Ge´ne´ralisations du the´ore`me
distribution may be imprecise and they may be in some des probabilite´s totales. Fundam Math, 25: 379-387.
interval. In this paper we have proposed a method to deal 14. Yager, R.R., 1986. Arithmetic and other operations on
with such situation. This method is an extension of [6]. Dempster-Shafer structures, International Journal of
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