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Abstract: Tn this paper, This article analysis the thermodynamic quantizes of some particle in simple harmonic
oscillation like bosonic fermionic and supersymatric harmonic oscillator and treatment the fermions particle in
box and derived the partition function, mternal energy and entropy. These system both at low and high
temperature. We are study the behavior of thermodynamic properties of a harmomically bound electron in

magnetic field.
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INTRODUCTION

describes the behavior of

system containing a large number N-particles. These

Thermodynamic

system are characterized by their temperature, volume,
number and type of particles the state of the system 1s
then further described by it 1s the total energy and a
variety of other parameters including the entropy,
statistical thermodynamic 1s that branch of physics which
studies macroscopic system from a microscopic or
molecular pomt view, our goal i1s understanding and
prediction of macroscopic properties from the properties
of individual molecules making the system [1] plank's
hypothesis; the quantization of the radiation oscillators in
searching for a modification of the above treatment that
would reduce the contribution of high frequencies to
energy, plank was led to make assumption equivalent to
the following: the energy of an oscillator of natural
frequency v 1s restricted to integral multiplies of basic
unite hv [2].

We are analysis the quantum thermodynamic
properties of some oscillator system like a Bosonic -
Fermionic and Supersymatric harmonic oscillator. Since
the harmonic oscillator is the model system. Tt is intuitive
to study the basic quantum thermodynamic properties in
classically speaking, the harmome oscillator system a like
particle moving in direct x connected by a spring to fixed
point. The potential energy is:

) = 12m w'x’

In finally, particle in a box; assume v(x) in the time-
independent Schrodinger equation to be zero inside
one dimensional box of length a and infinite outside the
box a free particle wave function is appropriate, the
energy F, implies to E, = #*%* / 8ma® and the wave
function after normalization given by:

W =2/ aSin(nr/ a)x

We try derived the two fundamental distribution
law of statistical mechanics the Fermi-Dirac distribution
and Bose- Einstein, applies to system whose N-body
wave function is antisyamtic with respect to interchange
of any two identical particle and the other distribution,
applies to system whose N-body wave function is
symmetric under such an mnterchange. We can use grand
obtain  the
thermodynamic and m section we analyses the problem
of an electron the combined presence of magnetic field

canonical ensemble formalism to

and a parabolic confinement potential.

Statistical Thermodynamic Quantities Thermodynamic
Connection: the central
statistical thermodynamic function of the canonical
ensemble (N, V. and T fixed ) and is called the grand
ensemble

The function Z;, = 1is

function, canonical

description is the most useful [4] one as in most particle

canomical ensemble
case 1t 18 possible to control the temperature and not the
energy of the system. Grand canonical ensemble partition
function.
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As the canonical partition function cemmection
between thermodynamic and statistical thermodynamic for
closed 1sothermal system if we can determine = for a
system we can calculate 1t thermodynamic properties.

5=5 A he
z

And the partition function Z the connection between
thermodynamic and cancnical ensemble, internal energy

JN,V

S—Kmz+xronl
ar

(average energy)

dlnZ
ar

E-= KTZ[ (4)

The entropy S

And the Helmhotz free energy A in terms of 7 by
using [4-5] along with the fact that A=E-TS 1s given

A=—KTInZ

And the specific heat in constant volume heat capacity

¢, =(eEser),

The
quantization: We shall start or discuses by merely

reformulating the Schrédinger equation in the Hamiltonian
take the form [5].

Schrodinger equation in first and second

ZV(xk,x_i)

1
H= ZT(xk)+ S
k k=i

T 18 the Kinetic energy and V 1s the potential energy
of interaction between particle and terms represent the
mteraction between every pair if particle, counted one
which accounts for the factor of 1/2. The time-dependent
Schradinger equation by

We can now expand the many body wave functions as
follows

112

)= D ClE.E,,

E) By

The Schrodinger equation multiply by the expression

Ug (x) U, (x,)

Which 15 product of the adjoin wave function

corresponding the fixed set of quantum number E,,........ E,
the many particle wave function assumed to have the
following properties ¥(....% ... %, ) =T ¥ (...x, ....x%.0)

Particle that require the plus + sign are called bosons
and temporarily concentrate on such system and the
others sign are called fermions.

The many particle Hilbert space and creation
and distribution operator, let to be complete and
orthonormal which requires that theses states satisfy
the condition

<n1n2 ......... |y ... > FRL R orthogonality
Z ‘”1”2 ........ > <n1n2 ........ | =1... completness
Py JHg e

Time-independent operator follows directly from the
commutation rules for example.

[buby’] =8y
These are just the commutation rules for the creation

and destruction operator of harmonic oscillator all
properties of these operator

biby |myy=m|mm, =1,2.3,
b} = e | g 1)
bz,‘nk>:.\fnk +1‘?‘2k +1>

In particular our desired occupation number basic

(16)

states are simply the direct product of eigenstates of
number operator for each mode

1.
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Occupation Number Representation of Fock Space,
because the order does not matter, it 1s convemient only
to count the particles in every state. To be able to reach
all states of in occupation number representation we have
to build linear combinaticns: An arbitrary vector |¢) can
be written as

Creation and Annihilation Operators Now it is easy
to define operators creating and annihilating particles in
a certain state

bk‘?il, ........ nk>:‘/a‘nk, ........ ,Hk*1>
b;[|n1, ......... nk>:1/rzk+l‘nk, ........ ,rzk+l>

»] 1s called creation operator
k

Now let us consider a classical harmonic oscillator in
one dimensional describe by a coordinate g and p. The
Hamilton operator

| 2.2
H=— +M @ x
QM(p

by the operator a'and a we can write the Hamilton

H= hm[a;aB + lj
2
The subscript B to identify operator and satisfy

T _
[aB,aBaB =ag

Also  we can see and

b)) = Jug +1jmg +1)

bp|ngi=\lng|ng -1} where the wave function

(al)"

Jost

Probability of a state with energy FE, is same as

0)

[2) =
probability of oscillator having energy E, with n the
oscillator quantum Number the probability can define by

1 —EJIKT
=—e
Z

£
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Where the partition function can be calculate

Z :Tr{e_HB'f‘U]
§
The partition function with density matrix »- T,{e*ﬁH }

and the quantum mechanics operator Af corresponding
to Af and the operator &f given by

_ Tr(Mef’BH)

We can defined a new operator # by
M=Tr (M ,6)
The Hamilton operator given by A
- t 1
H=ho| agag + 5
Many problem and engmeering science are modeled
by ordinary differential equation, Nonlinear equation
which one of the basic nonlinear eighth-order boundary

value problems equation.

Bosonic Harmonic Oscillator: The observable remain the
partition function.

Z :Tr(e_ﬁHB): Z(n‘e_ﬁHB ‘n}

.| ﬂ

e—ﬁa;aa |i’l>} e—ﬁﬁw!Z
And partition function given by

H

e—ﬁhfm’z 1

7= =
e PP osinh(he/2KT)

1-
Where 3= 1/KT by hyperbolic function from the partition
function we can derive all thermodynamic quantities and
are given by
Free energy
A =Kitin2 + KT In (simhihe /2KT7))

Internal energy

E-= %“’ooth(hw/ 2KT)
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Entropy
S hw .
== coth{few/ 2KT )~ In(2sinh (hw/2KT))
K 2KT
Specific heat
2
S (h—w] cosech® (hew/2KT)
K 2KT

All thermodynamic quantities of a simple bosonic
harmonic oscillator.

Fermionic Harmonic Oscillator: In order introduce the
fermionic harmonic oscillator; let us start by briefly the
main formula for the bosomic case, in the operator
description the basic commutation relation the Hamilton,
the energy eigenstate and the completeness relation can
be expressed as

la.d]=0 [l [0 [a.a]=1
The completeness
g]@w—jﬁhxx—g;j@wxﬂ

In the fermiomc case we replace the algebra of
equation Hamilton

{a.ay=0 {ad|=1

Consider next the Hilbert space the analogue # we
defined the vacuum state |0}

0)

Then we defined a cne -particle state of |1 }

a

0

l3=4d10}
By the last equation and multiply the operator

a|1y=aa’

0) 0)=[0)

The Hamilton the analogue of g is an operator

(1-&&3)

acting in this space and can be defined as

H= ha)(a;aB ;]

The observable remain the partition function
z = 1r(e 7 )= {0l P20+ (1l P72 1)

2 = {foJo+ e P e

z =(1+& @) M0 — 200sh (/2K )

We can derived all thermodynamic quantities
Free energy

F=—KTIn (2cosh(hw / 2KT))
Internal energy (average energy)

hew

E_:—Ttanh(ha)/ZKT)

Entropy

- PO anh (heo/ 2KT) + In(2c0sh (oot 2KT))
2KT

The specific heat

2
G _ (hm] sechz(hm/ 2KT)
K 2KT

Supersymmetric Harmonic Oscillator: Supersymmetric
oscillator is a simple toy mode in quantum field
it
femionic oscillator in the same @ product state are

ny = |n1>\n2> | nJ

theory and is a combination of bosonic and

denoted by |1,

In femionic and bosonic Hy is given by

Hy=Hp+Hpg

Nglng)=ng|ng)
Nplng)y=ngz|ng)
Hg|ng.ng)=haxngz +ng)|ng)|ng)

For the of the bosonic

and fermionic w = w; = @, we get the supersymmetric

composite  system
oscillator is

E, = hew(n, + ng) (52)
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The partition function

z :Tr(efﬁHB)

z :Tr(efﬁHB): Z (nF,nB|(ef‘8hw)|nB,nF>

z={0]jo)+ Z(ﬂﬁ‘({n’?ﬁhw)‘ﬂﬁﬁ Z(”ﬂ(e%’gﬁhw“”ﬂ

A/ KT
e

+
Z :choth(hw/KT)

We can derive all thermodynamic quantities
Free energy

A=—KTIncoth (hw /KT)

Internal energy

= ho
L —
sinh(hw/ KT')
CONCLUSION

In tlus paper, we analyze the thermodynamic
quantities of some simple oscillator systems like bosonic
harmonic oscilla-tor, fermionic harmonic oscillator and a
super symmetric har-momc oscillator (wlich 13 a
combination of bosonic and ferm-ionic oscillators) and
study the behavior of the thermodynamic properties.
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