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Differential Pencils with a Turning Point
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Abstract: In this paper we mvestigate boundary value problems for second-order differential pencil on the half-

line having turning point. Using of the asymptotic forms of solutions of the differential equation on the half-

line, we get the asymptotic distribution of the eigenvalues.
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INTRODUCTION

Differential equations with nonlinear dependence
on the spectral parameter and with turning points arise in
various problems of mathematics as well as in applications
[1]. Some aspects of the inverse problem for differential
pencils without turning points were studied m [2].
Indefinite differential equations with turming points
produce significant qualitative modification in the
mvestigation of the inverse problem. For classical Sturm-
Liouville operators with turning points in the finite
mterval have been studied fairly completely i [3]. Some
aspects of the inverse problem for differential pencils
without tuming points were studied in [4]. Here we
mvestigate boundary value problem for differential
pencils with tuming points.

We consider the differential equation

PO+ (PR + ipgr () + go ey =0, xz0, (1)

on the half-line with nonlinear dependence on the spectral
parameterp. Letw >0 and let

R(x)z{il, xzazl, (2)

W, = >
1e. the sign of the weight-function changes in interior
point, which is called the turning point. The function
g(x), J = 1,2 are complex-valued, ¢(x) is absolutely
continuous and(l_,_x)qff) e L{0,00) forO< < j <1

In this paper, we will study the solutions and
eigenvalues of the boundary value problem with spectral

boundary condition. Tn section 2, we determine the
asymptotic form of the solutions of (1) and using these
asymptotic estimates, derive characteristic function and
eigenvalues.

Properties of the Spectral Characteristics: We consider
the boundary value problem L for Eq.(1) on the half-line
with the boundary condition

U{y):= y O+ (Bip+ Byip0)=0, (3)

where the coefficients B, and f3, are complex numbers and
B+ £ o [+ :={p:+Imp >0} >
[1y:={p :Imp =0} - By well-known method [5, 6], we

Denote

have the following theorem:

Theorem 1: Equation (1) has an unique solution y = e
{(x,p), pe Il &£ x> awith the following properties :

»  For each fixed x > a, the functions ™ (x, p), v=0,1
are holomorphic for pell, and pell (ie. they are
plecewise holomorphic).

»  The functions e (x, p), v=0,1 are continuous for
x > a, pell, and pell (we differ the sides of the cut
II). In the other words, for real p, there exist the

finite linits

@ py=  lim_ eMixz)
z—>,0,z€l'[i
Moreover, the functions ™ (x, p), v = 0,1 are
contimwously  differentiable  with  respect  to

pelly \{0}and p eI \{0}-
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For x 5w, pe I+ W10}, v =0,1, The function e (x,p) is called the Jost-type solution for
oL Eq.(1).
N, p) = (HipV R(x) 2 exp(+iipx— Q(x)(1+ (1)), (4) We extend e (x,p) to the segment [0, a] as a solution
where of E.q(1) which 1s smooth forx > 0, re.
1pex
O(x)=—| q(Hdt. (5)
2'[0 ! e(v)(afo,p):e(v)(aJr 0,p)v =0,1. ™

For | 515w, pells v = (unformly inx = a

Then the properties 1-2 remain true for x = 0.

Let @(x,p) and S(x,p) be solutions of Eq.(1) under the
conditions ¢{x,0) =1, I{g) =0, Six,p) =0, 5(x,p) =1 For
each fixed x » 0, the functions ¢™ix, ) and 5*(x,p) , v=10,1
where [1]:=1+0(pH. are entire in p.

1
. p) = (Eip) Rix) Zexp(tlipx—QaN1] (5

Lemma 2: The following asymptotic formulae are valid
1. For |g|~ee, m = 0,1 uniformly m xe [0, ]

0™ )= CPI (s Besptapx+ 12
20 0]

[+ (cofﬁoexp(mprf%)[l]),

2. For |p|=e, m = 0,1 uniformly m xe [0, o
1 1 -1

o, p) = (%mz'(a—lﬁ)axp(—pamz'(a—lﬁ)HQ(a)(l—f(a—1)7»[1]
) 1 1 -1
+’Tﬁ1(1—f<a—1)2)exp<pa<1—f<a—1)2)—z'Q<a)(1+z'(a—1> )0
1 1 -1 1

x(z‘p(x—1)5>mexp(z'p(x—1)5x—(x—lﬁQ(x))ﬂ%mz'(a—lﬁ)
1 1 1

wexp(—pa(l—i(a—1)2)+iQ(a)1+i(a—1) 2 N1]+ %(14@7 1)2)
1 -1 1

wexp(pa(l+i(a—1)2) = iQ(a)(1— i(a —1) 2 P1—ip(x—1)2)"
1 -1

wexp(—ip(x—1)2x+ (x—1) 2 Q).
Proof: Denote T = {p :+Rep > 0} tis known [5, 6] that for x> a,m=0,1 p e [14, | p |-> o, there exists a fundamental
systems of solutions {¥,(x p)¢,-,; of Eq.(1) of the form

1 1 -1
7 p) = (1) liptx - 12 ep((- 1) ipatx— 102 — (x 1) 2 Q1] (8)

Similarly for there exists a fundamental systems of solutions {¥,(x p)},-,,; of Eq.(1) of the form

xc[0,a) peTis.| p| >,

M p) = (1) op)” eap((-1) (wpx i%mu, m=0,1. @

Using the Birkhoff-type fundamental systems of solutions, one has

P (e p) = A (P)yi™ e )+ Ay () (x p) xef0,al, (10)
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P p) = BUPI (e p) + By(p )y (), xza ()

Taking (9) and the nitial conditions ¢(0,p) =1 and ¢ (x,p) = -(§,p+ B,) into account, we calculate

(12)

A(p) - “’;fl (1] 4,(p)- “’;—Cfl[l].

Substituting () and (12) in (10), we cbtain asymptotic formula for ¢™(a-0,p0) m =1 as |-+ uniformly in x€[0, a]
Now using (8), (11) and the smooth condition go(m)(a —0.p)= qo(m) (a+0,p) m=0,1, Ve have

1 -1 1
By(p)= %axp(—ipa(a -1+ QlaXa-1) 2 Yipla-1)*¢a.p)+ ¢'(a, p))1],
1 -1 1

Bi(p)— %axp(fpa(a —1)2 —Qa)Xa—1)2 Y—ip(a—1)29(a, p)+¢'(a, pYI1].

Substituting these expressions B,(p), B,(©) and (8) in (11), we obtain asymptetic form for ¢ (x,p) as x > @ Lemma
2 is proved. ¢

Denote A(p) 1 = Ule(x,p)). (13)

The function A(p) 1s called the characteristic function for the boundary value problem L. The function A(p) is
holomorphic m I, and IT and for real p there exist the fimte limits

Axi{p)  lim Az)

zp, zel'[i

Moreover, the function Iplsw,pe s is continuously differentiable for p It 03

Theorem 3: For | p |- w0, p =Ty » the following asymptotical formula holds:
-1

80p)=Ea 1) axplilipa- Q(a)))((—wﬂ(a—l))(l—Bl)axp(wpa Qla ))[1]

“Cagita 0+ B opa + 2

Proof: By the Birkhoff-type fundamental system of solutions of Eq.(1) on the interval [0, a] we have

™ (x,p)= A () p)+ Ay ()8 (. p). xe[0,al. 14
Using of the Cramer’s rule, we calculate
-1
4(p)= —(a 12 (1- fla” ))%P(G)Pa— iQ(aYwexp(ipa - Qa)))1],
Ay (p)= —(a 1) B (1+ Ha= " ))%P(—G)PWFIQ(a)fw)exPﬁ(lPa Qlan1]

Now, taking (9), (13) and coefflclents A (p),j=12we have
-1

(a—1)2 exp(tlipa— Q(a)N(-1)" (1
i(a -

(wp)” ( 1)

"(x, p) = == Dexplwpa —iQ(a) ®)

xexp(—epx +iQ(xYw)[1]+ (1+ ))exp( wpa+iQ{a)w)exp(opx — iQ(xY w)[1]).
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Together with (3) and (13) this yields the characteristic
function. +

Theorem 4: For sufficiently large £, the function A(p) has
simple zeros of the form:

Pr = L(k?n'+ Qa) K 10 )+ Oh), (15)
wa w
where
qolp@th 1, Cemia)
2 e-f 2 (~o+ila-1)

Proof: Using characteristic function and Rouche's

theorem [7], we obtain a countable set of zeros of A(p) of
the form (16).
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