African Journal of Basic & Applied Sciences 11 (1): 14-17, 2019 ISSN 2079-2034 © IDOSI Publications, 2019 DOI: 10.5829/idosi.ajbas.2019.14.17

Moore-Penrose's Inverse and Solutions of Linear Systems

J. López-Bonilla, R. López-Vázquez and S. Vidal-Beltrán

ESIME-Zacatenco, Instituto Politécnico Nacional, Edif. 4, Col. Lindavista CP 07738, CDMX, México

Abstract: We employ the generalized inverse matrix of Moore-Penrose to study the existence and uniqueness of the solutions for over- and under-determined linear systems, in harmony with the least squares method.

Key words: Linear systems • SVD • Least squares technique • Pseudoinverse of Moore-Penrose

INTRODUCTION

$$A_{nxm}\vec{v}_{mx1} = \lambda \vec{u}_{nx1}, \quad A_{mxn}^T \vec{u}_{nx1} = \lambda \vec{v}_{mx1}, \tag{6}$$

For any real matrix A_{nxm} , Lanczos [1, 2] introduces the matrix:

$$S_{(n+m)x(n+m)} = \begin{pmatrix} 0 & A \\ A^T & 0 \end{pmatrix},\tag{1}$$

with A^{T} denoting the transpose matrix and studies the eigenvalue problem:

$$S\vec{\omega} = \lambda\vec{\omega},$$
 (2)

where the proper values are real because S is a real symmetric matrix. Besides:

rank
$$A \equiv p$$
 = Number of positive eigenvalues of S, (3)

such that $1 \le p \le \min(n, m)$ Then the singular values or canonical multipliers follow the scheme:

$$\lambda_1, \lambda_2, \dots, \lambda_p, -\lambda_1, -\lambda_2, \dots, -\lambda_p, 0, 0, \dots, 0,$$
(4)

that is, $\lambda = 0$ has the multiplicity n + m - 2p. Only in the case p = n = m can occur the absence of the null eigenvalue.

The proper vectors of *S*, named 'essential axes' by Lanczos, can be written in the form:

$$\vec{\omega}_{(n+m)x1} = \left(\frac{\vec{u}}{\vec{v}}\right)_m^n, \qquad (5)$$

then (1) and (2) imply the Modified Eigenvalue Problem:

hence:

$$A^T A \vec{v} = \lambda^2 \vec{v}, \quad A A^T \vec{u} = \lambda^2 \vec{u}, \tag{7}$$

with special interest in the associated vectors with the positive eigenvalues because they permit to introduce the matrices:

$$U_{nxp} = (\vec{u}_1, \vec{u}_2, ..., \vec{u}_p), \quad V_{mxp} = (\vec{v}_1, \vec{v}_2, ..., \vec{v}_p),$$
(8)

verifying $U^T U = V^T V = {}_{Ipxp}$ because:

$$\vec{u}_j \cdot \vec{u}_k = \vec{v}_j \cdot \vec{v}_k = \delta_{jk},\tag{9}$$

therefore $\vec{\omega}_j \cdot \vec{\omega}_k = 2\delta_{jk}$, j, k = 1, 2, ..., p. Thus, the Singular Value Decomposition (SVD) express [1-5] that *A* is the product of three matrices:

$$A_{nxm} = U_{nxp} A_{pxp} V_{pxm} A = \text{Diag} (\lambda_1, \lambda_2, \dots, \lambda_p)$$
(10)

This relation tells that in the construction of A we do not need information about the null proper value; the information from $\lambda = 0$ is important to study the existence and uniqueness of the solutions for a linear system associated to A. Golub [6] mentions that the SVD has played a very important role in computations, in solving least squares problems [7], in signal processing problems and so on; it is just a very simple decomposition, yet it is of fundamental importance in many problems arising in technology.

Corresponding Author: ESIME-Zacatenco, Instituto Politécnico Nacional, Edif. 4, Col. Lindavista CP 07738, CDMX, México.

It is important to observe that the symmetric matrices $(UU^{T})_{nxn}$ and $(VV^{T})_{nxm}$ are identity matrices for arbitrary vectors into their respective spaces of activation [5], that is:

$$UU^T \vec{u} = \vec{u}, \quad \forall \vec{u} \in Col \ U, \quad VV^T \vec{v} = \vec{v}, \quad \forall \vec{v} \in Col \ V; \quad (11)$$

besides, (10) allows obtain the SVD of the Gram matrices:

$$(AA^T)_{nxn} = U\Lambda^2 U^T, \quad (A^T A)_{mxm} = V\Lambda^2 V^T, \tag{12}$$

such that $p = rank \ A = rank \ (AA^T) = rank \ (A^TA)$.

From (10) and (12) we observe that:

$$Col \ A = Col \ (AA^{T}) = Col \ U, \quad Col \ A^{T} = Col \ (A^{T}A) = Col \ V.$$
(13)

The eigenvectors associated with $\lambda = 0$ verify the equations:

$$\vec{Av_j} = \vec{0}, \ j = 1,...,m-p, \quad \vec{A^T u_k} = \vec{0}, \ k = 1,...,n-p,$$

$$\vec{v_r} \cdot \vec{v_j} = 0, \ \forall r, j, \ \vec{u_t} \cdot \vec{u_k} = 0, \ \forall t, k$$

(14)

therefore:

$$V^T \vec{v}_j = \vec{0}, \ \forall j, \ U^T \vec{u}_k = \vec{0}, \ \forall k,$$
(15)

$$A\vec{x} \in Col \ U \text{ and } A^T A\vec{x} \in Col \ V, \ \forall \vec{x} \in E^m,$$

 $A^T \vec{y} \in Col \ V \text{ and } AAT \vec{y} \in Col \ U, \ \forall \vec{y} \in E^n.$

In Sec. 2 we exhibit the Moore-Penrose's pseudoinverse of A [8-13] via the corresponding SVD [14-16], which is useful in Sec. 3 to study the solutions of over- and under-determined linear systems [2, 5] in the spirit of the least squares method [7, 17].

Generalized Inverse: The Moore-Penrose's inverse [2, 8-13] is given by:

$$A^{+}_{mxn} = V_{mxp} \Lambda^{-1}_{pxp} U^{T}_{pxn}, \qquad (16)$$

which coincides with the natural inverse obtained by Lanczos [2, 5]. The matrix (16) satisfies the relations [10, 11, 13]:

$$AA^{+} = A, \ A^{+}AA^{+} = A^{+}, \ (AA^{+})^{T} = AA^{+}, \ (A^{+}A)^{T} = A^{+}A,$$
 (17)

that characterize the pseudoinverse of Moore-Penrose. In particular, from (10), (11) and (16):

$$AA^{+} = UU^{T} \quad \therefore \quad AA^{+}\vec{u} = \vec{u}, \quad \forall \vec{u} \in Col \ U,$$

$$A^{+}A = VV^{T} \quad \therefore \quad A^{+}A\vec{v} = \vec{v}, \quad \forall \vec{v} \in Col \ V.$$
(18)

The use of (8) and (10) into (16) implies the following expression for the Lanczos generalized inverse:

$$A^{+} = (\vec{t}_{1}t_{2}...\vec{t}_{n}), \quad \vec{t}_{j} = \frac{u_{1}^{(j)}}{\lambda_{1}}\vec{v}_{1} + \frac{u_{2}^{(j)}}{\lambda_{2}}\vec{v}_{2} + ... + \frac{u_{p}^{(j)}}{\lambda_{p}}\vec{v}_{p},$$

$$j = 1,...,n, \qquad (19)$$

where $u_k^{(j)}$ means the *j* th- component of \vec{u}_k ; similarly:

$$(A^{+})^{T} = (\vec{r}_{1}\vec{r}_{2}...\vec{r}_{n}), \quad \vec{r}_{k} = \frac{v_{1}^{(k)}}{\lambda_{1}}\vec{u}_{1} + \frac{v_{2}^{(k)}}{\lambda_{2}}\vec{u}_{2} + ... + \frac{v_{p}^{(k)}}{\lambda_{p}}\vec{u}_{p},$$

$$k = 1,...,m,$$
(20)

therefore:

$$Col A^{+} = Col V, \ Col(A^{+})^{T} \equiv Col(U\Lambda^{-1}V^{T}) = Col U.$$
(21)

We can use (16) to construct the pseudoinverse of each Gram matrix, in fact [13]:

$$(A^{T}A)^{+}_{mxm} = V\Lambda^{-2}V^{T}, \ (AA^{T})^{+}_{nxn} = U\Lambda^{-2}U^{T},$$
(22)

with the interesting properties:

$$(A^{T}A)^{+}A^{T} = A^{+}, \ (AA^{T})^{+}A = (A^{+})^{T}, (A^{T}A)^{+}(A^{T}A) = A^{+}A = VV^{T}.$$
(23)

Each matrix has a unique inverse because every matrix is complete within its own spaces of activation. The activated p-dimensional subspaces (eigenspaces / operational spaces) are uniquely associated with the given matrix [5].

Linear Systems: We want to find $\vec{x} \in E^m$ verifying the linear system:

$$A\vec{x} = \vec{b},\tag{24}$$

for the data A_{nxm} and $\vec{b} \in E^n$, It is convenient to consider two situations:

a). Over-determined linear system [2, 5]: In this case we have more equations than unknowns, that is, m < n.

Lanczos [18] comments that the ingenious method of least squares makes it possible to adjust an arbitrarily over-determined and incompatible set of equations. The problem of minimizing $(A\vec{x} - \vec{b})^2$ has always a definite solution, no matter how compatible or incompatible the given system is. The least square solution of (24) satisfies [5, 17]:

$$A^{T}A\vec{x} = A^{T}\vec{b}, \ \vec{x} \in Col \ V, \ p = m,$$
⁽²⁵⁾

and the remarkable fact about (25) is that it always gives an even-determined (balanced) system, no matter how strongly over-determined the original system has been.

The system (25) is compatible because from (13) and (15) we have that ${}_{A}{}^{T}\vec{b}$ is into $Col(A^{T}A) = Col V$. Now we multiply (25) by $(A^{T}A)^{+}$ and we use (11) and (23) to obtain the solution:

$$\vec{x} = A^+ \vec{b}. \tag{26}$$

which is unique because p = m, that is, $Col V = E^m$, then in (14) the system A_{Vj} only has the trivial solution; hence the Moore-Penrose's inverse gives the least square solution of (24). The expression (26) is in harmony with the results in [19-22].

We have eliminated over-determination (and possibly incompatibility) by the method of multiplying both sides of (24) by A^{T} . The unique solution thus obtained coincides with the solution generated with the help of A^{+} [5].

b). Under-determined linear system [2, 5]: There are more unknowns than equations, that is, n < m.

In this case we may try the least square formulation of (24), that is, to accept (26), however, now the solution is not unique because p < m and the system $A\vec{v}_j$ has m - p non-trivial independent solutions; an under-determined system remains thus under-determined, even in the least square approach.

An alternative process is to transform the original \vec{x} into the new unknown \vec{z} via the relation [5]:

$$\vec{x} = A^T \vec{z},\tag{27}$$

then (24) acquires the structure $AA^T \vec{z} = \vec{b}$ whose least square solution is given by the pseudoinverse of Moore-Penrose:

$$\vec{z} = (AA^T)^+ \vec{b} + \sum_{j=1}^{n-p} c_j \vec{z}_j,$$
(28)

where the quantities c_j are arbitrary and the \vec{z}_j are n - p independent vectors generating the Kernel $(AA^T) = Kernel(A^T)$ [13], that is:

$$A^T \vec{z}_j = \vec{0}, \ j = 1, ..., n - p.$$
 (29)

Thus, from (16), (22), (23), (28) and (29) we have that the solution of (27) is given by:

$$\vec{x} = A^T (AA^T) + \vec{b} = V \Lambda^{-1} U^T \vec{b} = A^+ \vec{b},$$

in agreement with (26).

Although that (26) is not unique for the underdetermined case, we can say that it is the 'natural solution' for the linear system (24).

CONCLUSIONS

Our study shows the importance of the SVD [1-6, 14-16] of a matrix and of the corresponding Moore-Penrose's inverse [8-13], to elucidate the least square solution [7, 17-22] for over- and under-determined linear systems [2, 5].

REFERENCES

- 1. Lanczos, C., 1958. Linear systems in self-adjoint form, Amer. Math. Monthly, 65(9): 665-679.
- Bahadur-Thapa, G., P. Lam-Estrada, J. López-Bonilla, 2018. On the Moore-Penrose generalized inverse matrix, World Scientific News, 95: 100-110.
- Lanczos, C., 1958. Extended boundary value problems, Proc. Int. Congress Math. Edinburgh, 1958, Cambridge University Press, pp: 154-181.
- Lanczos, C., 1966. Boundary value problems and orthogonal expansions, SIAM J. Appl. Math., 14(4): 831-863.
- 5. Lanczos, C., 1997. Linear differential operators, Dover, New York.
- Golub, G.H., 1996. Aspects of scientific computing, Johann Bernoulli Lecture, University of Groningen, 8th April 1996.
- Ch L. Lawson and R.J. Hanson, 1987. Solving least squares, SIAM, Philadelphia, USA.
- Moore, E.H., 1920. On the reciprocal of the general algebraic matrix, Bull. Amer. Math. Soc., 26(9): 394-395.

- 9. Bjerhammar, A., 1951. Rectangular reciprocal matrices, with special reference to geodetic calculations, Bull. Géodésique, pp: 188-220.
- 10. Penrose, R., 1955. A generalized inverse for matrices, Proc. Camb. Phil. Soc., 51: 406-413.
- 11. M. Zuhair Nashed (Ed.), M., 1976. Generalized inverses and applications, Academic Press, New York
- Ben-Israel, A., 2002. The Moore of the Moore-Penrose inverse, Electron. J. Linear Algebra, 9: 150-157.
- 13. A. Ben-Israel, A. and T.N.E. Greville, 2003. Generalized inverses: Theory and applications, Springer-Verlag, New York.
- H. Schwerdtfeger, H., 1960. Direct proof of Lanczos decomposition theorem, Amer. Math. Monthly, 67(9): 855-860.
- 15. Stewart, G.W., 1993. On the early history of the SVD, SIAM Rev., 35: 551-566.
- Yanai, H., K. Takeuchi and Y. Takane, 2011. Projection matrices, generalized inverse matrices and singular value decomposition, Springer, New York Chap. 3.

- Lam-Estrada, P., J. López-Bonilla, R. López-Vázquez and M.R. Maldonado, 2013. Least squares method via linear algebra, The Sci. Tech, J. Sci. & Tech., 2(2): 12-16.
- 18. Lanczos, C., 1988. Applied analysis, Dover, New York.
- Penrose, R., 1956. On the best approximate solutions of linear matrix equations, Proc. Camb. Phil. Soc., 52(1): 17-19.
- Greville, T.N.E., 1960. The pseudoinverse of a rectangular singular matrix and its application to the solution of systems of linear equations, SIAM Rev., 1(1): 38-43.
- Hearon, J.Z., 1968. Generalized inverses and solutions of linear systems, J. Res. Nat. Bur. Stand. B 72(4): 303-308.
- 22. R. Tewarson, R., 2018. On minimax solutions of linear equations, The Computer Journal, 15(3): 277-279.