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Moore-Penrose’s Inverse and Solutions of Linear Systems

J. López-Bonilla, R. López-Vázquez and S. Vidal-Beltrán

ESIME-Zacatenco, Instituto Politécnico Nacional, Edif. 4,
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Abstract: We employ the generalized inverse matrix of Moore-Penrose to study the existence and uniqueness
of the solutions for over- and under-determined linear systems, in harmony with the least squares method.
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INTRODUCTION (6)

For any real matrix A , Lanczos [1, 2] introduces the hence:nxm

matrix:

(1)

with A  denoting the transpose matrix and studies the matrices:T

eigenvalue problem:

(2)

where the proper values are real because S is a real
symmetric matrix. Besides: (9)

rank A p = Number of positive eigenvalues of S, (3)

such that 1 p  min (n, m) Then the singular values or Value Decomposition (SVD) express [1-5] that A is the
canonical multipliers follow the scheme: product of three matrices:

(4) A  = U A V  A = Diag ( , ,... ) (10)

that is,  = 0 has the multiplicity n + m – 2p. Only in the This relation tells that in the construction of A we do
case p = n = m can occur the absence of the null not need information about the null proper value; the
eigenvalue. information from  = 0 is important to study the existence

The proper vectors of S, named ‘essential axes’ by and uniqueness of the solutions for a linear system
Lanczos, can be written in the form: associated to A. Golub [6] mentions that the SVD has

, (5) least squares problems [7], in signal processing problems

then (1) and (2) imply the Modified Eigenvalue Problem: technology.

(7)

with special interest in the associated vectors with the
positive eigenvalues because they permit to introduce the

(8)

verifying U U = V V =  because:T T
Ipxp

therefore . Thus, the Singular

nxm nxp pxp pxm 1 2 p
t

played a very important role in computations, in solving

and so on; it is just a very simple decomposition, yet it is
of fundamental importance in many problems arising in
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It is important to observe that the symmetric matrices that  characterize  the  pseudoinverse of Moore-Penrose.
(UU ) and (VV )  are identity matrices for arbitrary In particular, from (10), (11) and (16):T T

nxn nxm

vectors  into  their  respective  spaces of activation [5],
that is: (18)

(11)

besides, (10) allows obtain the SVD of the Gram matrices: expression for the Lanczos generalized inverse:

(12)

such that 

From (10) and (12) we observe that:

(13)

The eigenvectors associated with  = 0 verify the
equations: (20)

therefore:
(14)

therefore:

each Gram matrix, in fact [13]:
(15)

In Sec. 2 we exhibit the Moore-Penrose’s
pseudoinverse of A [8-13] via the corresponding SVD [14- (23)
16], which is useful in Sec. 3 to study the solutions of
over- and under-determined linear systems [2, 5] in the
spirit of the least squares method [7, 17]. Each matrix has a unique inverse because every

Generalized Inverse: The Moore-Penrose’s inverse [2, 8- The activated p-dimensional subspaces (eigenspaces /
13] is given by: operational spaces) are uniquely associated with the

, (16)

which coincides with the natural inverse obtained by linear system:
Lanczos  [2,  5]. The  matrix  (16)  satisfies  the relations
[10, 11, 13]: (24)

for the data A  and  It is convenient to consider
(17) two situations:

The use of (8) and (10) into (16) implies the following

(19)

where  means the j th- component of  similarly:

(21)

We can use (16) to construct the pseudoinverse of

(22)

with the interesting properties:

matrix  is  complete within its own spaces of activation.

given matrix [5].

Linear Systems: We want to find  verifying the

nxm
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a). Over-determined linear system [2, 5]: In this case we (28)
have more equations than unknowns, that is, m < n.

Lanczos [18] comments that the ingenious method of where the quantities c  are arbitrary and the  are n  – p
least squares makes it possible to adjust an arbitrarily independent vectors generating the Kernel (AA ) =
over-determined  and  incompatible  set   of  equations. Kernel (A ) [13], that is:
The problem of minimizing  has always a definite
solution, no matter how compatible or incompatible the (29)
given system is. The least square solution of (24) satisfies
[5, 17]: Thus, from (16), (22), (23), (28) and (29) we have that

(25)

and the remarkable fact about (25) is that it always gives
an even-determined (balanced) system, no matter how
strongly over-determined the original system has been. in agreement with (26).

The system (25) is compatible because from (13) and Although that (26) is not unique for the under-
(15) we have that  is into Col (A A) = Col V. Now we determined case, we can say that it is the ‘naturalT

multiply (25) by (A A)  and we use (11) and (23) to obtain solution’ for the linear system (24).T +

the solution:

(26)

which is unique because p = m, that is, Col V = E , then in [1-6, 14-16]  of  a  matrix  and  of  the correspondingm

(14) the system  only has the trivial solution; hence Moore-Penrose’s inverse [8-13], to elucidate the least
the Moore-Penrose’s inverse gives the least square square solution [7, 17-22] for over- and under-determined
solution of (24). The expression (26) is in harmony with linear systems [2, 5].
the results in [19-22].
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