
, , 0dyf x y
dx

 
= 

 

( ) ( )dy p x y f x
dx

+ =

( ) ( ) ,ady p x y f x y
dx

+ =

(1 ) ( ) (1 ) ( ).dy a p x u a f x
dx

+ − = −

( ) ( ) ( ) ( ).dy p x h y f x g y
dx

+ =

2( ) ( ) ( ),dy p x y f x y g x
dx

+ + =

1
1( ) ,y y x
v

= +

11 .
2

dydy dv
dx dx dxv

= −

African Journal of Basic & Applied Sciences 10 (2): 29-32, 2018
ISSN 2079-2034
© IDOSI Publications, 2018
DOI: 10.5829/idosi.ajbas.2018.29.32

Corresponding Author: Getachew Abiye Salilew, Department of Mathematics, College of Natural and Computational Science,
MaddaWalabu University, Bale-Robe, Ethiopia.  E-mail: getachewmerto@gmail.com.

29

Generalization of the Famous Riccati and Bernoulli ODEs
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Department of Mathematics, College of Natural and Computational Science,
Madda Walabu University, Bale-Robe, Ethiopia

Abstract: Proposing a generalization of the famous Riccati and Bernoulli ordinary differential equations (ODEs)
by introducing a class of nonlinear first order ODEs. The author provides the general solutions for these
introduced classes of ODEs. Besides, some examples to illustrate the applications are provided.
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INTRODUCTION The first order ODE of (1.2), was generalized by the

An ODE of first order is an algebraic equation of
, involving derivatives of some unknown

function with respect to one independent variable [1-3].
The first order linear ODE on the unknown y can be Where p(x) and f(x) are both continuous and also are the
expressed in a normal (or explicit) form as functions h(y) and g(y) with g(y)  0. If g(y) is a

(1.3) has a family of solutions [7], which satisfies
(1.1)

where p(x) and f(x) are both continuous functions and
p(x) is called the coeficient of linear first order ODE [4, 5].
The analytic solution of (1.1) with integral constant C, can The study of the Jacopo Francesco Riccati differential
be expressed in the form equations goes back to the early days of modern

one of the simplest types of nonlinear ODEs and

In 1695 Jacob Bernoulli [6] first proposed the study of physics, mathematics and engineering sciences [8-11].
nonlinear ODE The classical Riccati equation

(1.2)

in which a  is fixed. If a = 0 and a = 1, then (1.2) is is a first-order ODE with a quadratic non-linearity. Then,
linear, otherwise it is non-linear. If a  0, 1 we set u = y , (1.4) may be transformed into linear equation by a change1-a

then the equation will be reduced to (1.1), which will be of variable which a single particular solution, say y =
easily solved. Thus,

recent work done [7] as:

(1.3)

differentiable function and h(y) = g(y)( g(y) dy), then1

mathematical analysis, since such equations represent

consequently Riccati equations play an important role in

(1.4)

y (x), of (1.4) is known. Setting , then1

 After some simplifications in (1.4), we

obtain:



1[ ( ) 2 ( ) ( )] ( ),dv p x f x y x v x
dx

− + =

1 .
dydy dv

dx dx dx
= +

2
1[ ( ) 2 ( ) ( )] ( ) .dv p x f x y x v f x v

dx
+ + = −

2( ( )) ( ) ( ) ( )[ ( )] ( ),d h y P x h y f x h y g x
dx

+ + =

( ( )) ( ) ( ) ( )[ ( )] ,ad h y P x h y f x h y
dx

+ =

( ) ( )1( ( ) (1 ) ( )
x dx x dx

h y e e f x dx C
−−

 
 = − +
 
 

∫ ∫∫

2( ) ( ) ( ).du P x u f x u g x
dx

+ + =

1( )1 ( )
u u x

v x
= +

1[ ( ) 2 ( ) ( )] ( ).dv P x f x u x v f x
dx

− + =

( ) ( ) .adm P x m f x m
dx

+ =

(1 ) ( ) (1 ) ( ).du a P x u a f x
dx

+ − = −

( ) ( )1( ( ) (1 ) ( )
x dx x dx

h y e e f x dx C
−−

 
 = − +
 
 

∫ ∫∫
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Where (x) = (1 – a)P(x) and C is an integral constant.
(1.5)

which is a linear first order ordinary differential equation.
The ODE (1.4), can be also transformed into Bernoulli
ODE by a change of variable which a particular solution,
say y = y (x), of this equation is known. Putting y = y (x)1 1

+ v, then . After simplifications with little

algebra in (1.4), we have:

(1.6)

Then transform this again into linear equation as
(1.2), see the way in (1.5) is faster than in (1.6) to transform
(1.4) in to (1.1).

Next, we present the main  results  of  this  paper
which are generalization of (1.2)  and   (1.4) by
introducing a class of nonlinear forst   order   ODEs.
There, we present a family of solutions to a subclass of
the ODEs of the main results which have (1.2) and (1.4) as
particular cases.

The Main Results: For a differentiable function h(y(x))
and u (x) is a single particular solution of (1.4), we have1

the following theorem.

Theorem: The following subclass of first order ODEs hold
true.

(2.1)

has a family of solutions which satisfies

Where (x) = –[P(x) + 2f(x)u (x)] and C is an integral1

constant.

(2.2)

has a family of general implicit solutions

Proof: First, we proof the first identity (2.1). We transform
the given ODE of (2.1) into (1.4), by a change of variable.
Let u = h(y) then we obtain 

(2.3)

Since (2.3) is the same as (1.4), so u (x) is a particular1

solution of both (1.4) and (2.3). Putting  and

using (1.5), we get

(2.4)

Applying (1.1) the analytic solution of (2.4), which is
also the solution of (2.1) is

Where (x) = – [P(x) + 2f(x)u (x)] and C is an integral1

constant.
Hence we complete the proof of (2.1).

Next, we proof the second identity (2.2). We
transform the given ODE of (2.2) into (1.2), by a change of
variable. Let m = h(y), then we have 

(2.5)

Applying (1.2) and setting u = m , we obtain1-a

(2.6)

Using (1.1), (2.5) and (2.6) after simplification, the
solution of (2.2) is

Where (x) = (1 – a)P(x) and C is an integral constant.
Hence we complete the proof of (2.2).

Examples: Let us show the usefulness of the theorem via
some examples. Using theorems (2.1) and (2.2), solve the
following ODEs.



2 22 1 ,dy xy y x
dx

+ − = +

0
1 1

1 ( ), .
odx dx

e e dx c for c
y x

−
= − + ∈

−
∫ ∫∫ 

1( )y x x
c x

= +
−

22 tan sec cos (1 )secdy x y y y x y
dx

+ − + = +

2 2cos 2 sin (sin ) 1dyy x y y x
dx

+ − = +

1x
c x

 + − 

2 2 2 2 22 (1 ) (1 )( ) (1 )(1 )dy x y arctany y arctany x y
dx

+ + − + = + +

1( ) tany x x
c x

 = + − 

2
2

2dy y
dx x

− = −
1

1( )u x
x

=

2
2( )g x
x

= − 2( )k x
x

=

2

3
1 3( )

3
xy x

x C x
= +

−

2
2

2(ln )dy yy y
dx x

− = −

2

3
1 3ln

3
xy

x C x
= +

−

lndy Kry
dx y

 
=  

 

1 ln 0.dy Kr
y dx y

 
− = 

 

ln ( ) ,rx
Ce rx

K KCe y x
y e

−
−

 
= ⇒ = 

 

( ) ( ) ,
1

dy yP x f x y
dx a

+ =
−

( ) ( ) ( ) )1

1 ( ) ( ) ( )

(1 ) ( ) ,

( ) , .
1

P x dx P x dx P x dx

P x dx P x dx P x dx

y e e f x dx Ce C

y e e f x dx Ce C

− −−

− − −

= − + ∈

= + ∈
−

∫ ∫ ∫

∫ ∫ ∫

∫

∫





1
22dy y xy

dx x
− =

1 2, ( ) , ( )
2

P x f x x
x

= = − =
1( )x
x

= −
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Example 3.1: The Riccati ordinary differential equation

is a particular case of (2.1). Given u (x) is a single1

particular solution. Then, we have P(x) = 2x, f(x) = –1, g(x)
= 1 + x , h(y) = y and k(x) = – [P(x) + 2f(x) u  (x)]=  0. A2

1

family of solution to this ODE obtained as.

Hence , is the required general solution. 

Example 3.2:

The given ODE can be rewritten in the form

Given u (x) = x is a particular solution and let u = sin y1

thus y(x) = arcsin  is the solution.

Example 3.3:

The required general solution is .

Example 3.4: , provided that  is

a solution.

This is the classical Riccati ODE such that P(x) = 0, f(x) =

– 1, ,  and .

Hence is the general solution and C is

an integral constant.

Example 3.5: . Let u = ln y and using

example (3.4), the general implicit solution is

.

Example 3.6: Solve the Gompertz population growth
model:

.

The given model can be expressed in the form:

Let u = ln(K/y) and applying (2.1) after simplification, we
obtain:

is the general analytic solution. Where C is an integral
constant, x is time, r is intrinsic growth rate of population,
y(x) is the size of population at time x and K is the
carrying capacity of the environment, then as time goes to
very long the population size approach to the carrying
capacity of the environment [12], for positive intrinsic
growth rate r, which shows the given model is logistic.

Example 3.7: Suppose for  0 and  1 the Bernoulli
ODE

is a particular case of (2.2). Here k(x) = P(x). A solution to
this ODE is

Example 3.8: . Clearly

  and   for the given

classical Bernoulli ODE. Thus, we get



1
22 1 1 ,

2 2
y x dx Cx x Cx= + = +∫

2
21( )

2
y x x Cx = + 

 

2 1 2 12 (1 ) tan (1 ) tandy y y x y y
dx x

− −− + = +
0

2
x< <

2
21( ) tan

2
y x x Cx = + 

 

1 2 2

2

2( ( 1) ... 2 1) (1 ... )

1 ... .

n n n

n

dyny n y y y y y
dx x

x y y y

− −+ − + + + − + + + + =

+ + + +

2
2 211 ...

2
ny y y x Cx + + + + = + 

 

( ) 2( ) ( ) ( )d h y h y x h y
dx x

− =

2
21( )

2
h y x Cx = + 

 

1dy yry
dt K

 = − 
 

dy
dt

2dy rry y
dt K

− = −

1 ( )
1

rt
rt

rt
e Ky e C y t
K KCe

− −
−

 
= + ⇒ =   + 
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, for integral constant C.

Hence  is the desired result.

Example 3.9: , for
.

Hence  is the general result and C

is an integral constant.

Thus for any appropriate polynomial function h(y),
we have

So that , is the general

implicit solution.
In general,  implies that

.

Example 3.10: A simple logistic population growth model
is given as: 

.

where r is the intrinsic growth rate, K is the carrying
capacity of the environment, y(t) is the population size at
time t and  is the rate of change of the given

population with respect to time t. Then, we have

.

Thus, using (2.2), we obtain

.

Here C is an integral constant. Thus as time goes to
very long the population size approach to the carrying
capacity of the environment [12, 13] for positive intrinsic
growth rate.

Concluding Remarks: In this paper besides having an
important history background, it also has interesting
applications. In particular, the ideas of this paper may be
a base to obtain a generalized version of other first order
ODEs which is in the progress. Moreover, the approach
adopted in this paper was meant to reach not only
researchers but also undergraduate students.
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