African Journal of Basic & Applied Sciences 10 (2): 29-32, 2018 ISSN 2079-2034 © IDOSI Publications, 2018 DOI: 10.5829/idosi.ajbas.2018.29.32

Generalization of the Famous Riccati and Bernoulli ODEs

Getachew Abiye Salilew

Department of Mathematics, College of Natural and Computational Science, Madda Walabu University, Bale-Robe, Ethiopia

Abstract: Proposing a generalization of the famous Riccati and Bernoulli ordinary differential equations (ODEs) by introducing a class of nonlinear first order ODEs. The author provides the general solutions for these introduced classes of ODEs. Besides, some examples to illustrate the applications are provided.

Key words: First order ODE · Riccati and Bernoulli ODE

 $f\left(x, y, \frac{dy}{dx}\right) = 0$, involving derivatives of some unknown An ODE of first order is an algebraic equation of

function with respect to one independent variable [1-3]. The first order linear ODE on the unknown *y* can be Where $p(x)$ and $f(x)$ are both continuous and also are the

$$
\frac{dy}{dx} + p(x)y = f(x) \tag{1.1}
$$

where $p(x)$ and $f(x)$ are both continuous functions and $p(x)$ is called the coeficient of linear first order ODE [4, 5]. The analytic solution of (1.1) with integral constant *C*, can The study of the Jacopo Francesco Riccati differential be expressed in the form equations goes back to the early days of modern

$$
y(x) = e^{-\int P(x)dx} \bigg(\int e^{\int P(x)dx} f(x)dx + C \bigg), \ C \in \mathbb{R}.
$$

nonlinear ODE The classical Riccati equation

$$
\frac{dy}{dx} + p(x)y = f(x)y^{a},
$$
\n(1.2)

in which $a \in \mathbb{R}$ is fixed. If $a = 0$ and $a = 1$, then (1.2) is is a first-order ODE with a quadratic non-linearity. Then, linear, otherwise it is non-linear. If $a \ne 0, 1$ we set $u = y^{1-a}$, (1.4) may be transformed into linear equation by a change then the equation will be reduced to (1.1) , which will be of variable which a single particular solution, say $y =$ easily solved. Thus,

$$
\frac{dy}{dx} + (1-a)p(x)u = (1-a)f(x).
$$

INTRODUCTION The first order ODE of (1.2), was generalized by the recent work done [7] as:

$$
\frac{dy}{dx} + p(x)h(y) = f(x)g(y).
$$
\n(1.3)

expressed in a normal (or explicit) form as functions $h(y)$ and $g(y)$ with $g(y) \neq 0$. If $g(y)$ is a (1.3) has a family of solutions [7], which satisfies differentiable function and $h(y) = g(y) (\int g(y)^{-1} dy)$, then

$$
\int g(y)^{-1} dy = e^{-\int P(x)dx} \bigg(\int e^{\int P(x)dx} f(x) dx + C \bigg), \ C \in \mathbb{R}.
$$

one of the simplest types of nonlinear ODEs and In 1695 Jacob Bernoulli [6] first proposed the study of physics, mathematics and engineering sciences [8-11]. mathematical analysis, since such equations represent consequently Riccati equations play an important role in

$$
\frac{dy}{dx} + p(x)y + f(x)y^{2} = g(x),
$$
\n(1.4)

1 $y_1(x)$, of (1.4) is known. Setting $y = y_1(x) + \frac{1}{y}$, then $\frac{dy}{dx} = \frac{dy_1}{dx} - \frac{1}{y^2} \frac{dv}{dx}.$ $rac{dy}{dx} = \frac{dy_1}{dx} - \frac{1}{y^2} \frac{dv}{dx}$. After some simplifications in (1.4), we obtain:

Corresponding Author: Getachew Abiye Salilew, Department of Mathematics, College of Natural and Computational Science, MaddaWalabu University, Bale-Robe, Ethiopia. E-mail: getachewmerto@gmail.com.

$$
\frac{dv}{dx} - [p(x) + 2f(x)y_1(x)]v = (x),\tag{1.5}
$$

+ *v*, then $\frac{dy}{dx} = \frac{dy_1}{dx} + \frac{dv}{dx}$. After simplifications with little which is a linear first order ordinary differential equation. The ODE (1.4), can be also transformed into Bernoulli ODE by a change of variable which a particular solution, say $y = y_1(x)$, of this equation is known. Putting $y = y_1(x)$

algebra in (1.4), we have:

$$
\frac{dv}{dx} + [p(x) + 2f(x)y_1(x)]v = -f(x)v^2.
$$
\n(1.6)

Then transform this again into linear equation as (1.2) , see the way in (1.5) is faster than in (1.6) to transform (1.4) in to (1.1).

Next, we present the main results of this paper which are generalization of (1.2) and (1.4) by introducing a class of nonlinear forst order ODEs. There, we present a family of solutions to a subclass of the ODEs of the main results which have (1.2) and (1.4) as particular cases.

The Main Results: For a differentiable function $h(y(x))$ and $u_1(x)$ is a single particular solution of (1.4), we have the following theorem.

Theorem: The following subclass of first order ODEs hold true.

$$
\frac{d}{dx}(h(y)) + P(x)h(y) + f(x)[h(y)]^2 = g(x),
$$
\n(2.1)

has a family of solutions which satisfies

$$
\frac{1}{h(y) - u_1(x)} = e^{-\int \kappa(x)dx} \bigg(\int e^{\int \kappa(x)dx} f(x)dx + C\bigg).
$$

Where $K(x) = -[P(x) + 2f(x)u_1(x)]$ and *C* is an integral constant.

$$
\frac{d}{dx}(h(y)) + P(x)h(y) = f(x)[h(y)]^{a},
$$
\n(2.2)

has a family of general implicit solutions

$$
(h(y)^{1-\alpha} = e^{-\int \zeta(x)dx} \left(1-\alpha\right) \int e^{\int \zeta(x)dx} f(x)dx + C
$$

Where $\zeta(x) = (1 - a)P(x)$ and C is an integral constant.

Proof: First, we proof the first identity (2.1). We transform the given ODE of (2.1) into (1.4) , by a change of variable. Let $u = h(y)$ then we obtain

$$
\frac{du}{dx} + P(x)u + f(x)u^2 = g(x).
$$
 (2.3)

solution of both (1.4) and (2.3). Putting $u = u_1(x) + \frac{1}{v(x)}$ and Since (2.3) is the same as (1.4), so $u_1(x)$ is a particular using (1.5) , we get

$$
\frac{dv}{dx} - [P(x) + 2f(x)u_1(x)]v = f(x).
$$
\n(2.4)

Applying (1.1) the analytic solution of (2.4) , which is also the solution of (2.1) is

$$
\frac{1}{h(y) - u_1(x)} = e^{-\int \kappa(x)dx} \bigg(\int e^{\int \kappa(x)dx} f(x) dx + C \bigg).
$$

Where $K(x) = -[P(x) + 2f(x)u_1(x)]$ and *C* is an integral constant.

Hence we complete the proof of (2.1) .

Next, we proof the second identity (2.2). We transform the given ODE of (2.2) into (1.2), by a change of variable. Let $m = h(y)$, then we have

$$
\frac{dm}{dx} + P(x)m = f(x)m^{a}.
$$
\n(2.5)

Applying (1.2) and setting $u = m^{1-a}$, we obtain

$$
\frac{du}{dx} + (1 - a)P(x)u = (1 - a)f(x).
$$
\n(2.6)

Using (1.1) , (2.5) and (2.6) after simplification, the solution of (2.2) is

$$
(h(y)^{1-\alpha} = e^{-\int \zeta(x)dx} \left((1-\alpha) \int e^{\int \zeta(x)dx} f(x)dx + C \right)
$$

Where $\zeta(x) = (1 - a)P(x)$ and *C* is an integral constant. Hence we complete the proof of (2.2).

Examples: Let us show the usefulness of the theorem via some examples. Using theorems (2.1) and (2.2), solve the following ODEs.

Example 3.1: The Riccati ordinary differential equation

$$
\frac{dy}{dx} + 2xy - y^2 = 1 + x^2,
$$

is a particular case of (2.1) . Given $u_1(x)$ is a single particular solution. Then, we have $P(x) = 2x, f(x) = -1, g(x)$ $= 1 + x^2$, $h(y) = y$ and $k(x) = -[P(x) + 2f(x) u_1(x)] = 0$. A family of solution to this ODE obtained as.

$$
\frac{1}{y-x} = e^{-\int o dx} \left(\int -e^{\int 0 dx} dx + c_1\right), \text{ for } c_1 \in \mathbb{R}.
$$

Hence $y(x) = x + \frac{1}{c - x}$, is the required general solution.

Example 3.2:
$$
\frac{dy}{dx} + 2x \tan y - \sec y + \cos y = (1 + x^2) \sec y
$$

The given ODE can be rewritten in the form

$$
\cos y \frac{dy}{dx} + 2x \sin y - (\sin y)^2 = 1 + x^2
$$

thus $y(x) = \arcsin\left(x + \frac{1}{c - x}\right)$ is the solution. Given $u_1(x) = x$ is a particular solution and let $u = \sin y$

Example 3.3:
\n
$$
\frac{dy}{dx} + 2x(1+y^2)\arctany - (1+y^2)(\arctany)^2 = (1+x^2)(1+y^2)
$$

The required general solution is $y(x) = \tan\left(x + \frac{1}{c - x}\right)$.

Example 3.4:
$$
\frac{dy}{dx} - y^2 = -\frac{2}{x^2}
$$
, provided that $u_1(x) = \frac{1}{x}$ is a solution.

This is the classical Riccati ODE such that
$$
P(x) = 0, f(x) = -1
$$
, $g(x) = -\frac{2}{x^2}$, and $k(x) = \frac{2}{x}$.

2 $f(x) = \frac{1}{x} + \frac{3x^2}{3(1-x^3)}$ $y(x) = \frac{1}{x} + \frac{3x^2}{3C - x}$ Hence $\frac{1}{1} \frac{3x^2}{x^2}$ is the general solution and *C* is

an integral constant.

Example 3.5:
$$
\frac{dy}{dx} - y(\ln y)^2 = -\frac{2y}{x^2}
$$
. Let $u = \ln y$ and using example (3.4) , the general implicit solution is $\ln y = \frac{1}{x} + \frac{3x^2}{3C - x^3}$.

Example 3.6: Solve the Gompertz population growth model:

$$
\frac{dy}{dx} = ry\ln\left(\frac{K}{y}\right).
$$

The given model can be expressed in the form:

$$
\frac{1}{y}\frac{dy}{dx} - r\ln\left(\frac{K}{y}\right) = 0.
$$

Let $u = \ln(K/y)$ and applying (2.1) after simplification, we obtain:

$$
\ln\left(\frac{K}{y}\right) = Ce^{-rx} \Rightarrow y(x) = \frac{K}{e^{Ce-rx}},
$$

is the general analytic solution. Where *C* is an integral constant, *x* is time, *r* is intrinsic growth rate of population, $y(x)$ is the size of population at time *x* and *K* is the carrying capacity of the environment, then as time goes to very long the population size approach to the carrying capacity of the environment [12], for positive intrinsic growth rate *r*, which shows the given model is logistic.

Example 3.7: Suppose for $\alpha \neq 0$ and $\alpha \neq 1$ the Bernoulli ODE

$$
\frac{dy}{dx} + P(x)\frac{y}{1-a} = f(x)y^{\alpha},
$$

is a particular case of (2.2). Here $k(x) = P(x)$. A solution to this ODE is

$$
y^{1-\alpha} = (1-\alpha)e^{-\int P(x)dx} \int e^{\int P(x)dx} f(x)dx + Ce^{-\int P(x)dx}, C \in \mathbb{R}
$$

$$
\frac{y^{1-\alpha}}{1-\alpha} = e^{-\int P(x)dx} \int e^{\int P(x)dx} f(x)dx + Ce^{-\int P(x)dx}, C \in \mathbb{R}.
$$

Example 3.8: $\frac{dy}{dx} - \frac{2}{x}y = xy^{\frac{1}{2}}$. Clearly

$$
\alpha = \frac{1}{2}, P(x) = -\frac{2}{x}, f(x) = x \text{ and } \kappa(x) = -\frac{1}{x} \text{ for the given}
$$

classical Bernoulli ODE. Thus, we get

$$
y^{\frac{1}{2}} = \frac{1}{2}x \int dx + Cx = \frac{1}{2}x^2 + Cx
$$
, for integral constant C.

Hence $y(x) = \left(\frac{1}{2}x^2 + Cx\right)^2$ is the desired result.

Example 3.9:
$$
\frac{dy}{dx} - \frac{2}{x}(1 + y^2) \tan^{-1} y = x(1 + y^2) \sqrt{\tan^{-1} y}
$$
, for
 $0 < x < \frac{\pi}{2}$.

Hence $y(x) = \tan\left(\frac{1}{2}x^2 + Cx\right)^2$ is the general result and *C*

is an integral constant.

Thus for any appropriate polynomial function $h(y)$, we have

$$
(ny^{n-1} + (n-1)y^{n-2} + ... + 2y + 1)\frac{dy}{dx} - \frac{2}{x}(1+y+y^2+...+y^n) = x\sqrt{1+y+y^2+...+y^n}.
$$

So that $1 + y + y^2 + ... + y^n = \left(\frac{1}{2}x^2 + Cx\right)^2$, is the general

implicit solution.

In general,
$$
\frac{d}{dx}(h(y)) - \frac{2}{x}h(y) = x\sqrt{h(y)}
$$
 implies that

$$
h(y) = \left(\frac{1}{2}x^2 + Cx\right)^2.
$$

Example 3.10: A simple logistic population growth model is given as:

$$
\frac{dy}{dt} = ry \left(1 - \frac{y}{K}\right).
$$

time t and dy is the rate of change of the given *dt* where r is the intrinsic growth rate, K is the carrying capacity of the environment, $y(t)$ is the population size at

population with respect to time *t*. Then, we have

$$
\frac{dy}{dt} - ry = -\frac{r}{K}y^2
$$

Thus, using (2.2), we obtain

$$
y^{-1} = e^{-rt} \left(\frac{e^{rt}}{K} + C\right) \Rightarrow y(t) = \frac{K}{1 + KCe^{-rt}}
$$

Here *C* is an integral constant. Thus as time goes to very long the population size approach to the carrying capacity of the environment [12, 13] for positive intrinsic growth rate.

.

Concluding Remarks: In this paper besides having an important history background, it also has interesting applications. In particular, the ideas of this paper may be a base to obtain a generalized version of other first order ODEs which is in the progress. Moreover, the approach adopted in this paper was meant to reach not only researchers but also undergraduate students.

REFERENCES

- 1. Mark Levi, 2017. Ordinary differential equations, an intuitive introduction, November 28, 2017.
- 2. Subramanian, P.K. and M. Hendrata, 2011. Lecture notes on ordinary differential equations, California State University, Los Angeles, 2011.
- 3. Victor Liu, 2003. Differential equations in the AP* calculus exam, Olympia Press, 2003.
- 4. Wen Shen, 2015. Lecture notes for Math 251: Introduction to ordinary and partial differential equations, Spring, 2013.
- 5. Gabriel Nagy, 2015. Ordinary differential equations, August 16, 2015.
- 6. Bernoulli, J., 1695. Explicationes, annotationes et additiones ad ea quin actis superiorum annorum de curva elastica, isochrona paracentrica, & ve-laria hinc inde memorata, & partim controversa leguntur; ubi de linea mediarum directionum, aliisque novis, Acta Eruditorum, Dec 1695, 537-553.
- 7. Douglas Azevedo and Michele C. Valentino, 2016. Generalization of the Bernoulli ODE, International J. Mathematical Educa. in Sci. and Technol., 48(2): 256-260.
- 8. Mihir Sen and Joseph M. Powers, 2012. Lecture notes on mathematical methods, Updated 29 July 2012.
- 9. Ablowitz, M.J. and A.S. Fokas, 2003. Complex variables: Introduction and applications, Cambridge Texts in Applied Mathematics, Cambridge Univ. Press, $2nd$ edition.
- 10. MHille, E., 1976. Ordinary differential equations in the complex domain, Dover Publications, New York, 1976.
- 11. Ince, E.L., 1956. Ordinary differential equations, Dover Publications.
- 12. Salilew, G.A., 2016. Fish harvesting experienced by compensation growth function, World J. Fish and Marine Sci., 8(5): 177-181.
- 13. Salilew, G.A., 2017. Fish harvesting experienced by depensation growth function, Global J. Sci. Frontier Res., 17(2): 37-47.