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Abstract: Collagen is the most abundant protein of animal origin, comprising approximately 30% of total animal
protein. There are at least 19 variants of collagen, named type I to XIX. Types I, II, III and V are the fibrous
collagens. Type I collagen is found in all connective tissue, including bones and skins. It is a heteropolymer
of two  1 chains and one  2 chain. It consists of one-third glycine, contains no tryptophan or cysteine and
is very low in tyrosine and histidine. Guanidine hydrochloride to solubilize the part of collagen referred as GSC
and then RS-AL (crude connective tissue fractions) digested with pepsin called PSC were extracted from the
tissues of N. crepidularia. The GSC and PSC yields (on a dry weight basis) were 0.48% and 1.28% respectively.
The FT-IR spectral analysis of the collagen extract from tissues of N. crepidularia showed more or less same
number of peaks, lying within the same range of values of the commercial collagen (Human placenta collagen)
used  as  a  standard.  These  results suggest that collagen could be obtained effectively from the tissues of
N. crepidularia
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INTRODUCTION low antigenicity, bioresorbability, good biocompatibility,

Collagen  is  a  fibrous  protein  found  ubiquitously differentiation, effects wound healing, control of various
in  all  multicellular  animals.   It   is   a   particularly  rigid characteristics through physical and chemical
and   inextensible   extracellular   matrix   protein   that modifications,   moldability,   abundant   and  easily
serves  as  a  major  constituent of many connective purified [5]. Though the invertebrates comprise
tissues. The characteristic  feature  of  a typical collagen approximately 95% of the Animal Kingdom, the
molecule, tropo  collagen,  is  its  long,  stiff,  triple- information about their collagens and extracellular
stranded  helix, in which three collagen polypeptide matrices is scarce. The relative complexity of the
chains are wound around  one another in form of a invertebrate collagens and the difficulty in their
ropelike   superhelix.   These   peptides   are   extremely purification and characterization has hindered continued
rich  in  proline  and glycine, both of which are important progress in their research. Preliminary studies on
for   the   formation   of    the    collagen-specific   helical invertebrate  collagens  have been reviewed [6]. Added
structure [1-4]. effort on the analysis of invertebrate connective tissues

Collagen  plays  an  important  role  in  the  formation over two decades has led to the identification of
of  tissues  and  organs  and  is involved in various cells genetically distinct collagen types in a number of species
in terms of their functional expression. Recently, and there has been appreciable success in the isolation
alongside clarification of the biological functions of and purification of single molecular species of collagen.
collagen as an extracellular matrix protein, collagen has Hence in the present study, the tissue from the
been attracting attention as a biomaterial with many Archaeogastropod, N. crepidularia, was chosen to
unique  characteristics  such  as  high  tensile  strength, characterize the gastropod collagen.

induces coagulation of blood platelets, effects cell
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MATERIALS AND METHODS relied on a Bio-Rad FTIR – 40 model, USA. Sample (10mg)

The Archaeogastropod, N. crepidularia were and compressed further to prepare as a salt disc (10mm
collected from the mangroves in Vellar estuary, diameter) for reading the spectrum.
Parangipettai, Southeast Coast if India (Lat. N 11°29’.45’’
Long.   79°46’.028’’).    The   whole   tissues   were RESULTS
removed  from  the  shell,  washed  and  stored  at -20°C
for  further  studies.  Procedure  of  [7]  was followed for In   the    present    study,     both     quanidine-
the extraction of collagen (Guanidine Hydrochloride soluble  collagen   and   pepsin-soluble   collagen were
Soluble    Collagen     (GSC)    and     Pepsin    Soluble extracted from N. crepidularia and further partially
Collagen    (PSC)   from N. crepidularia. All steps were characterized.
carried out at 4°C.

Fourier  Transform  -  Infra  Red  Spectrum  Analysis: the   yield   of   GSC    was   very   low   (0.48%  on  wet
FT-IR spectroscopy    of    solid samples    of   standard weight   basis)   than   that   of   PSC   (1.28%   on  wet
(Human  placenta),  GSC  and  PSC  from  N.  crepidularia weight basis).

was mixed with 100 mg of dried potassium bromide (KBr)

Yield of  Collagen  (GSC  and  PSC):  On  comparison,

Fig. 1: Showing the FT - IR Spectrum of Standard Collagen

Table 1: Fourier Transform - Infra Red Spectra peak location and assignment for Standard collagen, GSC and PSC
Regions Standard GSC PSC Assignment
Amide A 3289 3310 3363 NH stretch coupled with hydrogen bond.
Amide B 2920 2922 2927 CH asymmetrical stretch.2

- 2853 2851 2853 CH symmetrical stretch2

Amide I 1644 1655 1656 C=O stretch / Hydrogen bond coupled with CN stretch
Amide II 1537 1544 1545 NH bend coupled with CN stretch

1450 - 1458 CH bend2

- - 1403 1451 COO – symmetrical stretch
- - - 1340 CH wagging of Proline2

Amide III 1260 1235 1241 NH bend coupled with CN stretch
- 1078 1078 1074 C-O stretch
- 1021 1020 1038 C-O Stretch
- 804 831 828 Skeletal stretch 
- - 632 668 Skeletal stretch 
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Fig. 2: Showing the FT - IR Spectrum of Guanidine Soluble Collagen (GSC) of N. crepidularia

Fig. 3: Showing the FT - IR Spectrum of Pepsin Soluble Collagen (PSC) of N.crepidularia

FT-IR Spectral Analysis: The FT -IR spectrum of DISCUSSION
standard collagen showed 10 major peaks (Fig. 1.);
whereas  the  FT  –  IR  spectrum  of  the both (GSC and Ottani et al. [8]’ defined “collagen” as a large (and
PSC)   depicted  11   and   13    peaks   (Fig.   2,   3  and growing) family  of  related  proteins, sharing some
Table  1)  respectively.  The  wave   length  details  and common traits but  also  exhibiting  wide  differences  and
their  corresponding  chemical  structures   are  given  in fulfilling various functional roles in different connective
Table 1. tissues. Generally,   vertebrate    collagens    and    gelatins
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have low polysaccharide contents. The cuticle of Ascaris responsible for later events leading to the mineralization
lumbricoides [9] is similar in this respect, but collagens process [29].
from earthworm cuticle (Lumbricus sp.) [10] and the In gastropod species, the foot muscle of the abalone,
cuverian tubules of Holuthuria forkali [9] contain large Haliotis discus, was reported to show the seasonal
amounts of polysaccharide. There is insufficient evidence change of collagen content, corresponding well to meat
available to show that the collagen found in snail from toughness [18]. In the earlier [30] examined and quantified
which they were derived. collagen synthesis by cultured mantle cells. During the

Collagen  is  abundant  in   most   invertebrates as first  48  hours,  de  novo synthesis represents 4.52% of
well  vertebrates  [6].  It  makes  up  about  one  fourth of the total  protein  synthesis  from  nacreous   mollusc,
the  protein  content  in  multicellular  animals  [11]. Haliotis tuberculata. In invertebrates, an in vitro study
Several reports on invertebrate collagen emphasized its focusing on collagen synthesis has been conducted in
morphological  and  functional  characteristics  [12]. Much sea urchin micromeres [31-33]. On days 1–5 of culture,
of the earlier work on invertebrate collagens was oriented collagen synthesis ranged from 0.5% to 5% of the total
towards a study of its distribution in various groups and protein synthesis [32]. The crude connective tissue
the results were based mainly on X – ray diffraction fractions (RS – AL) from the tissues contained mucous
analyses. However, chemical analyses of the collagen material and were very insoluble in 0.5M acetic acid, so
were made on Lumbricus, Allolobophora, byssus threads the RS – AL was treated with G/HCl solution to remove
of Mytilus edulis and the sponging fibrils by [10-13]. mucous material and solubilize part of the collagen. The
Some interesting results also appeared on the cuticle of G/HCl soluble protein was effectively salted out by
Ascaris, Holothuria, Helix, Metridium, Physalia and dialyzing  against  0.5  M acetic  acid  containing  2 M
Thyone. The amino acid composition of the collagens of NaCl and consisted mainly of collagenous material.
the Lobster, Blue crab, Octopus, Squid, Pearl Oyster and Approximately 2 – 3% of total collagen was solubilized by
Abalone was studied by Kimura et al. [14]. From the this extraction method. On the other hand, about 10-30%
available literature, it can be stated that collagenous of the total collagen could be solubilized from the residue,
connective tissue seems to occur throughout the animal after the G/HCl extraction, by the limited pepsin digestion
kingdom even in arthropods which have an extracellular for all the species examined [34]. However it is also found
system dominated by chitinous skeleton. Another that PSC also exhibited quite a similar pattern to those of
interesting feature of the invertebrate collagens is the the pepsin digest of the GS collagen, considering the
presence of large proportions of sugar which cannot be effects G/HCl treatment on collagen, but the same results
degraded of as they can be with vertebrates. Of the were  found  as  the  PS collagen from the G/HCl treated
invertebrate collagens and gelatins reviewed by Watson RS-AL. Mizuta et al. [7] reported  an enhanced yield of
[10] only the collagen derived from the cuverian  tubules the pepsin solubilized collagen by using a disaggregating
of  the   sea   cucumber   had  been found to contain solution (0.1M  Tris  –  Hcl,  pH  8.0,  containing   0.05  M
hydroxylysyl residues (4.7 per 1000 total residues)  [15]. EDTA, 0.5 M EDTA, 0.5 M NaCl and 0.2 M –
However,  detected hydroxylysine in all the invertebrate mercaptoehanol) and found 0.67% of collagen from the
gelatins that they studied, Metridium, Phyaalia and wet tissue of oyster Crassostrea gigas, the yield of PSC
spongin B having 25, 30 and 24 hydroxylysyl residues per when RS – AL treated with this solution was 30.9±2.4% of
1000 residues respectively, the highest yet reported for total collagen, which was significantly higher than that
any collagen or gelatin. without treatment (18.3±2.7%).

In  multicellular  organisms,  ECM  is  composed Splits of the skins of invertebrates and vertebrates
mainly of collagens and proteoglycans. In Mollusca, the such  as  cattle  and  pig  as  well  as  vertebrates  bones
presence of collagen molecules has been demonstrated are the main sources of collagen used in the food,
for several years, in particular, mussel byssus collagen pharmaceutical, cosmetic and leather industries [35-39].
from bivalves, squid skin collagen, or abalone Haliotis The main drawback in use of cattle and pig source is the
muscle collagen [16-21]. In the same way, PGs appear to infective agent that can be transferred from animals into
be widely distributed in invertebrates and chondroitin human beings. Additionally, the collagen obtained from
sulfate as well as heparan sulfate has been detected in pig bones cannot be used as a component of some food
molluscs [22-28]. The shell growth begins with the item for religious reasons. This paved the way for the
secretion by the mantle cells  of  an  ECM,  which  is  most strong need to develop alternative collagen sources.
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The physical and chemical properties of collagen collagen content in the skin amounts an average to 21.5%
from cattle skins are considerably not the same as from
those of invertebrate skins. Therefore the methods used
for isolation of collagen from cattle skins are not effective
enough for the isolation of collagen from fish, cuttlefish,
squid skins etc. There are only a few works dealing with
the  practical  utilization of connective tissue offal of
marine vertebrates and invertebrates [40-46] Other works,
concerning collagen of marine animals focus mainly on
cognitive aspects, such as collagen content in tissues, its
genetic types, amino-acid composition, extent of intra and
intermolecular cross linking, susceptibility to endo and
exogenous enzymes and thermal stability of collagen
Nagai  and  Suzuki [47]. Isolated about 2% of ASC and
35% of PSC from the skin of S. lycidas on dry weight
basis. From the skin of Japanese Sea bass, Chub mackerel
and Bullhead shark, the yield of collagens was very high
and the values were about 51.4%, 49.8% and 50.1%
respectively on the basis of lyophilized dry weight [44].
Compared to this the tissues of N. crepidularia reported
low yield of about 0.48% of GSC and 1.28% of PSC against
the total collagen content  on  wet  weight  basis.  Tonar
and Marko, [48] studied the yield of 51±3.4/28±1.8 and
50±3.3/36±2.4 of collagen connective tissue, from foot of
pulmonate gastropods H. pomatia and Arion  rufus.
Amith  Kumar  Chaturvedi [49] studied the yield of PSC
and GSC from whole body tissues of Perna viridis was
found to be 0.33% and 0.01% respectively. The collagen
content may be decreased due to denaturation of protein
during the process of methodology  and difference in
environmental temperature [50].

The  collagen  content in the skin of Baltic cod
(Gadus morhua) was 21.5% on the wet weight basis and
about 71.2% on the dry weight basis [51] both the
collagen and non-collagen protein content in cod skins
depends upon the fishing season. During starvation
albumins and globulins are degraded and the collagen
content in skins increases [52-54] extracted 60% of PSC
and only 12% of ASC from the cartilage of S. officinalis
on wet weight basis whereas, in the same animal.
Sivakumar and Chandrakasan [55] estimated the yield of
ASC and PSC as 5.52±1.3 mg/g and 27.6±3.07  mg/g  from
the cranial cartilage and cornea. In O. vulgaris, [34]
extracted 1.4% and 1.9% of collagen from the  arm  and
mantle  muscles  and the protein content was  also
reported  as  9.1% and 14.0% respectively. But in  the
present study 0.48% of GSC and 1.28% of PSC (Wet
weight basis) was extracted from the N. crepidularia.
Sadowska et al. [51] studied and established that the
gross composition of skin of cod caught in the same
season  in   different   years  is  almost  constant  and  the

in the wet weight and 71.2% in the dry weight. It was also
absorbed that the share of collagen in total protein was
considerably determined on the basis of hydroxyproline
in samples. Further in the skin of cod the non-collagen
proteins, peptides and amino acids were estimated as
4.9% and 16.3% respectively on a wet and dry weight
basis. Some studies on collagen reveals that the collagen
represents the chief structural protein accounting for
approximately 30% of all vertebrate body protein. The
major impediment in the dissociation of collagen type I
from tissue is the presence of covalent crosslinks between
molecules. Collagen is insoluble in organic solvents [56].
In some tissues, notably in skins of young animals,
crosslinking is sufficiently low to extract a few percent
under appropriate conditions. The most commonly used
solvents are dilute acetic acid or neutral salt solution
(0.8M NaCl). The acetic acid is used to extract fresh and
negligible crosslinked collagen molecules present in the
outer skin of the animal. The extracted material is purified
by precipitation, centrifugation and dialysis [57]. In the
present study also, acetic acid was used for the extraction.

The regions of amides I, II and III are known to be
directly related with the shape of a polypeptide. Amide A
band (3400-3440 cm ) is related to N-H stretching1

vibrations. Amide I band (1600-1660 cm ) is associated1

with stretching vibrations of carbonyl groups in peptides,
being the most important factor in investigating the
secondary structure of a protein. Amide II (~ 1550 cm )1

is associated  with  NH bonding and CN stretching.
Amide III (1320 – 1220 cm ) is related to CN stretching1

and NH and it is involved with the triple helical structure
of collagen [58-60]. Muyonga et al., [60] studied the skin
collagen  of  young  Nile  perch  showed  the  amide
regions bands of A, B, I, II and III  were  observed  at  the
wavelengths of 3434 cm , 2924 cm , 1650 cm , 15421 1 1

cm  and 1235 cm  respectively  and  that of the adult1 1

Nile perch skin collagen  were  at  3458  cm ,  2926  cm ,1 1

1654  cm , 1555 cm and 1238cm , respectively.1 1 1

Correspondingly in N. crepidularia tissues, the present
study also with the main bands were observed in the
amide regions of A, B, I, II, III at 3310 cm , 2922 cm ,1 1

1655 cm , 1544 cm  and 1235cm  in GSC respectively1 1 1

and 3363 cm , 2927 cm , 1656 cm , 1545 cm and 12411 1 1 1

cm  in PSC respectively. Plepis et al. [61] observed the1

band ratio between 1240 cm  (amide III) and 1454 cm1 1

and confirmed that the triple helical structure is present in
skin (SKC), scale (SCC) and bone (BOC) collagen of
Sebastes mentella like that in this study the band ratio
were observed between 1241cm  (amide III) and 1458cm1 -1

in PSC by which we can confirm that triple helical
structure were present in N. crepidularia.
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The amide A band is associated with the N-H used as a potential source for collagen. Further studies
stretching frequency. According to Doyle et al.  [62] a using NMR and GC – MS could bring out more details
free  N-H  stretching  vibration  occurs  in  the  range  of about complete structure of GSC and PSC from the
3400 - 3440cm  and when the NH group is a peptide is mangrove Archaeogastropod N. crepidularia1

involved in a hydrogen bond, the position is shifted to
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