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Abstract: The objective of this review paper is to access the effect of heat stress on nutrient metabolism and
feed intake of ruminant animals. Animals go through heat stress (HS) when the body temperature is higher than
the optimal range specified for the normal activity because the total heat load is greater than the capacity for
heat dissipation. Reduction in dry matter intake is generally associated with a decrease of rumen passage rate
and an increase of diet digestibility in ruminants maintained in thermo neutrality. Endogenous heat production
increases  due  to  the metabolic  utilization  of  crude  proteins  and  this  is higher than that for starch or fat.
The greater heat increment from crude proteins is partially related to urea synthesis and to greater protein
turnover. The changes in blood metabolites concentration due to water restriction should be separately
considered in the acute and in the chronic restriction. During acute water restriction, serum protein and albumin
increase due to the decreased blood volume; during chronic water restriction, both metabolites tend to decrease
Heat-stressed animals reduce feed intake, ostensibly as a survival strategy as digesting and processing
nutrients generates heat, especially in ruminant animals. It has traditionally been assumed that inadequate feed
intake caused by the thermal load was responsible for decreased milk production. Therefore this paper address
the heat stress and there effect on nutrient metabolism of the ruminant animal.
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INTRODUCTION Reduced feed intake occurring in animals exposed to

Heat stress is one of the factors making animal by which HS impacts production and reproduction [6].
production challenging in many parts of the world [1]. This also includes an altered endocrine status, reduction
Heat Stress animals reduce dry matter intake (DMI), in rumination and nutrient absorption and increased
activity and metabolic rate in an attempt to decrease maintenance requirements Collier et al. [7] resulting in a
metabolic heat production [2]. In dairy cattle, HS net decrease in nutrient/energy availability. In a review,
decreases milk yield [3], which has been traditionally Kadzere et al. [8] concluded that exposure to a hot
attributed to the heat-induced reduction in DMI [4]. environment is responsible for an increase of digestibility

Heat stress brings about changes in post-absorptive that may be explained by the reduction of DMI and
metabolism of animal independent of decreased feed prolonged retention of feed in the gastrointestinal tract.
intake and energy balance [5]. Animals go through heat Nevertheless, results available in literature on the effects
stress (HS) when the body temperature is higher than the of hot exposure on diet digestibility are often conflicting.
optimal range specified for the normal activity because the Milk composition is also discordantly altered during
total heat load is greater than the capacity for heat hyperthermia, which indicates that HS regulates
dissipation [6]. component synthesis in addition to its overall effect on

hot environment partly explains the biological mechanism
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milk yield [9, 10]. For instance, HS decreases milk protein [16]. Hepatic glucose production typically decreases after
content and yield, but the involved mechanisms remain ingesting carbohydrates; however, exogenous sugars are
largely unknown. Rhoads et al. [11] suggested that unable  to  blunt  HS-induced liver glucose output [17].
modest changes in the somatotropic axis may explain a The increased hepatic glucose output originates from
small portion of the reduction in milk protein yield during increased glycogenolysis [18].
HS. Reduction in DMI is generally associated with a A large proportion of an animal’s mass comprises
decrease of rumen passage rate and an increase of diet skeletal muscle, which can have a profound impact on
digestibility in ruminants maintained in thermo neutrality whole-animal energy metabolism and nutrient
[12]. Therefore this paper address the heat stress and homeostasis, especially during periods of stress. To
there effect on nutrient metabolism of the ruminant animal. better understand how an environmental heat load

The Objective of this Paper Is: within skeletal muscle, Rhoads et al. [19] examined heat

To understand the effect of heat stress on nutrient adaptation to chronic heat stress using microarray
metabolism. analysis.
To understand the effect of heat stress on feed The exogenous sugars supplementation reduces
intake. hepatic glucose production, but do not blunt the heat-

Effect of Heat Stress on Nutrient Metabolism the increased rate of glycogenolysis and gluconeogenesis
Carbohydrate Metabolism: Carbohydrates are a readily under chronic heat stress [21]. Similarly, acute heat stress
available energy source that can be converted into a results in an enhanced glycogenolysis but a decreased
number of metabolic intermediates and used in synthesis gluconeogenesis [21]. Interestingly, Wheelock et al. [22]
reactions, or utilized for the production of ATP. ATP and O’Brien et al. [23] reported that hepatic expression of
generation is a highly regulated process involving three the pyruvate carboxylase gene increases under chronic
distinct pathways generally termed glycolysis, the heat stress. Pyruvate carboxylase is a rate-limiting enzyme
tricarboxylic acid cycle (TCA) and oxidative that regulates the entry of alanine and lactate into the
phosphorylation (via the electron chain transport). gluconeogenesis pathway. Several authors reported
Pathway regulation is determined by several mechanisms increased  blood  lactate  concentrations   in  different
affecting enzyme activity including synthesis and heat-stressed models [24].
degradation rates, allosteric interactions and covalent Insulin is a potent regulator of carbohydrate and lipid
modi?cation and the energy charge of the cell [13]. metabolism and plays an important role in mediating the
Additionally, insulin and leptin concentrations, key regulation the post-absorptive nutrient partitioning in
hormones in energy metabolism, tended to decrease in heat-stressed animals. Although acute heat stress was
water-restricted Awassi ewes [14]. Blood glucose levels shown to decrease insulin concentrations of lactating
are affected by the severity and the duration of heat cows [25]. Increased insulin receptor abundance was
stress. reported by Tech et al. [26] in heat-stressed cows.

Saunders et al. [15] reported that mild heat stress Increased insulin blood level during chronic heat stress
increased significantly intramuscular glycogen explains the decreased circulating glucose concentration,
phosphorylase and pyruvate dehydrogenase activity, the blunted lipolytic activity and the increased
without affecting the intramuscular concentrations of lipogenesis of adipose tissue.
glucose 6-phosphate, lactate, pyruvate, acetyl-coenzyme
a (acetylCoA), creatine, phosphocreatine or ATP. Due to Protein Metabolism: Heat stress also affects post
the increased reduction of fatty acid oxidation under absorptive protein metabolism, as illustrated by changes
chronic heat stress, heat-stressed animals become in the quantity of carcass lean tissue in a variety of
increasingly dependent on glucose for their energy needs. species [27]. Muscle protein synthesizing machinery and
Taking  into  account  the  decreased feed intake and RNA/DNA synthesis capacity are reduced by
blood glucose levels, the use of glucose to meet environmental hyperthermia and similar effects apparently
production variables (lactation and growth) is declined occur with regard to mammary a- and b-casein synthesis.

influences the set points of several metabolic pathways

stress effects on skeletal muscle during beef cattle

induced liver glucose output [20]. These findings indicate
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Skeletal  muscle catabolism is also clearly increased thermoregulation; nutrient transport; excretion. For the
during HS, because numerous studies have reported purpose of this review, it is pivotal the role of water in the
increased plasma markers of muscle breakdown in a homoeothermic subjects because it represents an
variety of species [25]. Lot of studies demonstrated that important heat carrier for the regulation of thermal
heat-stressed   cattle   were   in  negative nitrogen balance, exchanges [33]. Water metabolism under heat stressful
as  consequence  of  the  reduction  in  feed intake [28]. condition is closely linked to the thermoregulatory
The reduction in the feed intake can be counteracted by requirements of the ruminant. High-producing dairy cows
the increase of protein content of the diet, which can lead have higher metabolic rate than lower-producing ones;
to an excess of nitrogen intake. Endogenous heat this implies they experience more difficulties to dissipate
production increases due to the metabolic utilization of body heat during the hot season [34].
crude proteins and this is higher than that for starch or The changes in blood metabolites concentration due
fat. The greater heat increment from crude proteins is to water restriction should be separately considered in the
partially related to urea synthesis and to greater protein acute and in the chronic restriction. During acute water
turnover. HS depresses RNA content, proteolytic rates restriction, serum protein and albumin increase due to the
and muscle protein turnover particularly acute heat stress decreased blood volume; during chronic water restriction,
increases protein catabolism. Increased protein catabolism both metabolites tend to decrease [35]. At the same time,
under chronic heat stress is likely to produce glucose acute water restriction induces the kidney to slow
through the gluconeogenesis pathway. The inability of glomerular filtration and increase urea reabsorption; this
heat stressed animals to utilize glucose sparing induces the increase of plasma levels of creatinine and
mechanisms to prioritize milk synthesis results in urea, whereas chronic water restriction induce a reduction
inflexibility of metabolism [29]. Heat stress directly affects of these plasma metabolites [35]. The dietary level of some
protein metabolism by increased skeletal muscle nutrients may affect the water requirement, namely for an
breakdown to afford amino acids which are necessary for increased demand for urine excretion. This is the case for
energy metabolism [30]. dietary crude proteins and Kumar et al. [36]. Recently, a

Lipid Metabolism: Heat stress (HS) affects numerous neutral conditions gave a driving role to the requirement
physiological processes including nutrient partitioning for  N  excretion  in determining water loss by urine [37].
and lipid metabolism. Lipid metabolism is affected by HS influences water metabolism by increasing plasma and
chronic heat stress. Ambient temperature-induced heat extracellular fluid volume in proportion to the
stress was shown to reduce fat oxidation in different thermoregulatory requirement of the cow [38].
species. Several studies demonstrated that during heat
stress, basal levels of NEFA are typically reduced in dairy Vitamins and Minerals Metabolism: Niacin helps to
cows [31]. Although lipolytic enzyme activity is reduced alleviate HS both by increasing evaporative heat loss from
under heat stress, the activity of the lipoprotein lipase of the body and also by reducing the effects of heat at the
the adipose tissue is increased, which allows suggesting cell level [39]. Feeding protected niacin increased free
that  hyper thermic animals have a greater storage plasma niacin levels, evaporative heat loss during peak
capacity of intestinal and hepatic triglycerides [32]. thermal load and associated with a small but detectable
Increased insulin sensitivity has been described for reduction in rectal and vaginal temperatures in dairy cows
animals experiencing HS in vivo [24]. Therefore, this study experiencing a mild thermal load [40], with variable effect
investigated the interaction between thermal treatment on milk production [41].
and insulin administration to investigate their lipolytic and Mineral supplementation under hot climate must be
lipogenic effects on adipocytes cultured under HS viewed not only as a simple mean to cover the important
conditions. (and increased) turnover of a specific nutrient, but also as

Water Metabolism: Water is a basic molecule in the body Chromium is a micronutrient that facilitates insulin action
of vertebrates because it is essential for the maintenance on glucose, lipid and protein metabolism. Little is known
of some vital functions: tonicity of tissue (by electrolyte about actual dietary chromium requirements; however,
balance and osmotic regulation); lubrication and because glucose use is predominant during HS, chromium

comprehensive model for water metabolism under thermo

a mean to buffer the effect of the diet and of climate [42].



Am-Euras. J. Sci. Res., 15 (2): 70-75, 2020

73

supplementation could reduce the negative effects of HS. prerequisite in developing more effective strategies to
Dairy cows in early lactation supplemented with chromium maximize food production in inhospitable environments.
under hot conditions have shown a reduction of weight Animals housed under optimum environmental conditions
loss, an improvement of milk production, a reduction of (also  known  as  thermo-neutral  zone;   TNZ)  will
plasma NEFA concentrations and an improvement of achieve or be close to achieving their genetic potential.
rebreeding rates [43]. Thus, environments that are outside of the TNZ will

Effect of Heat Stress on Feed Intake: Many species limit animals will prioritize temperature regulation instead of
their  feed  intake  during  HS  to minimize the thermic production.
effect of feeding, resulting in reduced growth [24, 44].
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