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Abstract: The Lanczos method has been utilized in a wide variety of research areas in the physical sciences, since 
atomic matters until nuclear physics, inclusive in the condensed matter and engineering. The method is useful to 
study the collective properties of a many-body system. We use the classical Lanczos algorithm to diagonalize the 
Hamiltonian that describes the radical pairs spin dynamics. Radical pairs appear quite often in biological processes, 
and they are sensitive to external magnetic fields. We also give explicit expressions for the calculation of relevant 
quantities regard the eigen-information for a radical pair system in the damped two-state approximation. The 
advantage of this method is that it allows the analysis of large systems involving only the needed information.   
 
Key words: Quantum mechanics, Radical pair model dynamics. 

 
INTRODUCTION 

 
 Several biological processes such as the photosynthesis, the geomagnetic orientation of bird migration and the 
enzymatic reactions can be explained throughout the spin polarization in radical interactions [1-3]. In fact, it is known that 
magnetic field significantly influences the movement of magnetic particles and induces a change in the final product of 
chemical reactions. Some chemical reactions like as bond hemolysis or with electron transfer usually create radicals in pairs, 
with some correlation electron spins. The two unpaired electrons spins, one on each radical, are initially either parallel (a 
triplet state) or anti-parallel (a singlet state), according to the spin multiplicity of the precursors. The chemistry of radical 
pairs (RP) is controlled not only by their diffusive motions and their inherent reactivity but also, and more important, by the 
spin-correlation via the requirement to conserve spin angular momentum. The RP participate in important [4] reactions as 
intermediates in a wide range of photolytic, thermal and radiolytic processes [5, 17]. Their electron spin-dependent reactivity 
and magnetic interactions give rise to magnetic polarization phenomena observable by nuclear magnetic resonance and 
electron paramagnetic resonance spectroscopies [6, 7]. The radical pairs also form the basis of the only well-established 
mechanism the radical pair mechanism (RPM). 
 Through this mechanism, an external magnetic field affects the interchange between singlet and triplet RP spin states. 
The weak magnetic interactions such as the hyperfine and Zeeman interaction of the RP are the only interactions that happen 
[8, 9], influencing the rates and yields of chemical reactions [10]. Physically, magnetic forces induce this spin state 
interchange. In fact, the coherent oscillatory interchange of singlet and triplet spin states is driven by intermolecular 
electron-nuclear Fermi interactions (well known in spectroscopy as a hyperfine coupling). The Zeeman resonance only 
occurs when one of the two radicals has no hyperfine couplings, such that its energy levels are split only by the interactions 
with the applied magnetic field. These phenomena have been widely exploited to provide detailed insight concerning free 
radical chemistry and spin physics [11], photosynthetic energy conversion [12], the structure and folding of proteins [13], 
and enzyme kinetics [14-16]. The possible existence of quantum effects in biological systems is fascinating. Thereby, in this 
paper, we illustrate the use of the Lanczos algorithm by giving explicit expressions for eigen values, conditions for steady 
states, the steady populations and transitions between singlet and triplet spin states of an RP coupled to a nuclear spin all 
immersed into an external magnetic field. 
 The radical pair dynamics is a technique that establishes the relationship when two radicals react together and how 
the interchange between singlet and triplet spin states can be carried out. Radical pair dynamics, and its chemistry, is of 
interest in biological systems. There are molecules like cytochrome P450 that are part of many biological chemical reactions. 
These molecules give raise to RP that can interact with a magnetic field and give rise to interesting effects. 
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 In Section 2, we establish the mathematical model for treating the time evolution of an RP coupled to a 1/2 nuclear 
spin and immersed in an external magnetic field. This system can be extended to more pairs and more nuclei, but in that case, 
the method should be implemented numerically. The case we present here can be worked out analytically. We also rewrite 
the evolution equation for the system’s density operator in the super-states representation so that we end up with a linear 
matrix equation amenable to linear algebra methods. We will use the Lanczos algorithm with this model to determinate some 
properties of the system. The Lanczos algorithm generates a vector space formed by only the necessary information for the 
calculation of quantities of interest according to those are needed. It is given a matrix representation for the transition 
operator (the super-state representation), the Lanczos method transforms such matrix into a symmetric tridiagonal form that 
permits the fast numerical calculation of eigen values usually when the system is large. When the system is small, even we 
can use the method to describe the behavior of the system analytically. In Sec. 3, we briefly explain how to implement the 
Lanczos algorithm to the RP system, in the damped two-state approximation. In Sec. 4, as an illustration, we apply the results 
of the previous sections, to transitions between singlet and spin zero triplet state of a general RP. We evaluate the 
eigen-information of the system, the realization of steady states, the steady state populations and transition probabilities. 
 
RADICAL PAIR DYNAMICS 
 
 The quantum dynamics of a so-called RP coupled to one single 1/2 spin nucleus came described by the Liouville 
equation:  
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 , (1) 

where the transition super operator ���  acting on the weight density operator �����  or strenght function. This term 
characterizes the global dynamics of the system and is expressed by  
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where  
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The operator �� is the Hamiltonian operator of the system given as [17]  
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 The first two-term describes the Zeeman interaction between the spines of the RP with a magnetic field (MF) �; �� 
is the magnetic moment of the electron, �� and �� are the gyro-magnetic factors of the radicals � and �, respectively. The 
hyperfine constant are �� for the interaction between the spin of the nucleus, �̂, and the spin of the electrons, �̂� ,  � � 1,2.  
 The exchange interaction between unpaired electrons of the partners is a function of inter-radical distance � between 
them and expressed by the interchange relation ���� � �0����  and molecular dynamics modulated it. Thus, the spin 
dynamics result being a small range function of exchange potential given by the last term of Eq. (4). We are going to use the 
spin population (SPo) to investigate not only the properties of individual character as the level energies and the Eigen 
system, but also those collective properties as local density of states and the interchange between singlets and triplets SPo 
[21]. The production and decay of SPo through the operator Γ� will be modeled, which is diagonal in the spin states spectral 
representation. The decay of SPo can be due to chemical reaction generating products.  
 We use the representation of the singlet |� � and triplet states, |�� �, |�0 � and |�� � of the RP electrons and the 
nucleus spin one half states | �� and | �� as the vector basis to study the evolution equation Eq.(1):  
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|�1 �� |� � | �� , |�2 �� |�0 � | �� , |�3 �� |�� � | �� , |�4 �� |�� � | �� , 

 
|�5 �� |� � | �� , |�6 �� |�0 � | �� , |�7 �� |�� � | �� , |�8 �� |�� � | �� , 

(5) 

Mathematically the action of the Hamiltonian Eq. (4) on these vectors is  
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where  
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 More information respect this spin Hamiltonian and their operational action can be found in the book of Hayashi [17]. 
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At this point, we can use the familiar linear algebra tools to change to so-called super-state representation. In this 
representation the density operator is replaced for a vector whose index are formed by the product of two indices of the 
discrete representation |�� � given by the Eq. (5). If the dimension of the |�� � representation is N, then the new index 
have �2 values. The matrix element of Eq. (1) is  
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 For the case of a damped two-level system, as our application example, the transition matrix ����, ��� acquires the 
form  
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where � �� �1|��|�2 �, Δ� �� �2|��|�2 � �� �1|��|�1 �, and �� �� ��|Γ�|�� �.  
 
  We now elucidate some properties of the RP system using the Lanczos algorithm for that purpose.  
 

 
Fig. 1: Two level system to analyze the � � � interconversion. 
 
LANCZOS METHOD 
 
 Nowadays the Lanczos method is typically used to find in a numerical way the eigen-information of large matrices 
representing real systems. However, it can also be used to determine relevant collective properties like the dynamics of a 
physical system [18-20]. The Lanczos method is also employed for solving systems of equations and is associated with the 
typical eigenvalue problem 
 
�� � ��,  � � ����,  � � ��, 
 
where � � �, because � � ��, for a large sparse symmetric matrix A. Again, the Lanczos method defines a computational 
tool which is very efficient to diagonalize a quantum mechanical Hamiltonian [21], more if we are interested in the 
evaluation of few eigen values and the corresponding eigenvectors. In fact, it is a iterative scheme in which, starting with an 
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initial vector (chosen from their Hilbert space), converts the eigen value problem associated with a quantum mechanical 
system into one that evaluate the eigen sytem of a Jacobi matrix, converting it in a real symmetric tridiagonal matrix. The 
first concept at hand is that we knew that a vector ��� � ��1, �2, … , ��� is called orthonormal if it satisfied the following 
conditions:  
 

��
��� � 1, 

 ���� � ����1, (19) 
�������� �� �� �2� 1, 

��
��� � 0,  � � �. 

 
 Ordinarily, the power method is used to find the eigenvector associated with the maximum eigen value, ���1 �
���� , with � a normalization factor to avoid that power be so large, ���1. When � � ∞, ���1 � �1, the eigenvector 
associated with eigenvalue �1, satisfying the hierarchy �1 � �2 � �3 … ��. The maximum eigenvalue is obtained using the 
Raleigh Quotient  
 

���, ��� �
��������

��������2. 

 
 Case in which we cannot use the QR method because it is inefficient, because QR approach does not maintain the 
sparsity of the new matrix generated by the iteration process if � is sparse. It is evident that, with this process, we can 
evaluate only one eigenvector and one eigen value. For this reason, Lanczos method is crucial. One step to arrive the 
Lanczos method is kept in safe each iteration used by the power method. The result is a set of vectors 
��,  ��,  �2�, … , ���1��, where each one of this vectors spans the so-called Krylov subspace of a matrix very close to � 
 

������ � ������, ��, �2�, … , ���1��. 
 
 After n iterations, ��, ��, �2�, … , ���1��  are linearly independent and �  can be generated from this space. 
Following the power method, after n-iterations we have an eigenvector, the sequence is linearly dependent, but we need a 
sequence of linearly independent vectors. The main step in the Lanczos method is orthogonalise such vectors. Then, we have 
� orthonormal vectors ��� � ��1,  �2, … ,  ���, taking k elements of this set in a such way that is satisfied the condition 
������� � �. The process implies a projection of the N-dimensional Hamiltonian onto a subspace associated with a chosen 
starting vector.  Now we change � to a tridiagonal matrix � applying a similarly transformation  
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thus, we can define the matrix � as  
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After � � � iterations  
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� � ��,�,  ���� � ��,�,   �����1 � ��,��1, ���1,� � ���1,�. 

 
 The ��� is the coordinate vector whose kth component is 1 and the other elements are 0. The matrix � represent the 
orthogonal projection of � onto the subspace spanned by the vectors ���� [23]. The conjecture ���� � ���� establish that:  
 

���1, �2, … , ��� � ��1, �2, … , �����. 
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 The left-hand side of the matrix in their first column results in  
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by iteration till i-th term results:  
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   To calculate the scalar coefficients��,  ��, we multiply the above equation by ��
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 Using the following recurrence relation, we use the value of ��  
 

�� � �����1 � ��� � ���� � ���1���1. 
 
 We assume that �� � 0 � �� � ��������. We determine the next Lanczos vector ���1 by orthogonalizing the 
vector ���   
 

���1 �
��

��
. 

 
 In summary, we need choose a ������ � �0, let �0 � ������0�, initiate iterations and evaluate �� � �/���1 �
� � ��� � � � � � ���1���1 � �� � ��

�� � � � � � ����. If it is necessary orthogonalise, then assign �� � ������� and 
compute the approximate eigen value of �� . The step � can acquire values as small as 2√� [24]. In theory since ����P � � 
and ���1 � 0  for some � � �, then the eigenvalue obtained for �� will be an eigenvalue for �. 
 A useful feature of this method is that the dimension of the generated vector space can be smaller than the dimension 
of the original representation of the system, eliminating redundant quantities as in the case of degenerate energy eigen 
values. In this section, we apply this method to the damped two-level system of Eq. (1) implementing the rules of the 
Lanczos method into a program written with friendly Mathematica 7.0 software from Wolfram Co.  
 Following the Lanczos recipe, we choose a starting vectors to generate the dual Lanczos vector space. For this 
purpose we call |�0�, and ��0| as two vectors named right and left respectively:  
 
1.- Such vectors will multiply the matrix to diagonalize � by left and right sides   
    respectively, ��0 � ����������. �0� and ��0 � ����������0. ��.  
 
2.- Calculate the first Lanczos parameter �0 � ����������0. ��0�,   
    �12 � �����������0. ��0 � �0

2�,  
 
3.- Evaluate the next Lanczos vectors, �1 � ������������0 � �0�0�/������12�, and     
    �1 � ������������0 � �0�0�/������12�  and so on.  
 
 In our problem, we begin with a physical situation that represents a singlet born spin state  
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��0| � �1 0 0 0�� , �and�|�0� � �

1
0
0
0

� . (20) 

 The basis vectors ����|� and ����′|� satisfying the orthonormality relation Eq. (19). The rest of Lanczos vectors are 
calculated using the following recursion relations:  
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the only non-vanishing matrix elements of the transition super operator ��� in the dual Lanczos representation are  
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with ��1 � 0. A valuable relationship for the determination of ���1 is  
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2 � ��
2. (23) 

 
Fig. 2:  Values of �2, and �3

2 for Δ� � 0.1, and �1 � 0.2. When �3 becomes zero, the Lanczos space has a dimension of 
only three and then the dynamic is simpler than for other values. 

 
 The result of the application of the Lanczos method to our damped two-level system, Eq. (18), is  
 

The next set of Lanczos vectors is  
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 (24) 
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 Plots of �2  and �3
2  for a particular value of Δ� and �1  are shown in Fig. 2. The value of ��  determines the 

dimension of the Lanczos space. If �� � 0 for � � �, then the dimension is � precisely. Thus, we see that the dynamics of 
the damped two-level system becomes simpler for some values of the parameters of the model, when � � 0, �∞ and when 
�2 � 0, if Δ� � 0.1 and �1 � 0.2. In fact, a Lanczos space of dimension three appears when � � 0, �∞, or when �2 � �1, 
or when Δ� � 0, �∞.  
 
 The last Lanczos vectors and parameters are:  

 

 

��3| � �
1

�����2 � 2|�|2
�0 �� � Δ��� , 
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(26) 

 A plot of �3 for Δ� � 0.1 is shown in Fig. 3.  

 
Fig. 3: Values of �3 for Δ� � 0.1. 
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THE RADICAL PAIR TRANSITION � � �� 
 
   To exemplify the use of the above algorithm, in this section we determine some properties of the transition � � �0. In 
this transition, only the states |�1 � and |�2 �, (in Eq. 5), participate and the sub-Hamiltonian to be considered is  
 

����� � � � �1
�1 ��� , 

 
where �1 � ��� � ��

2
. We also include damping of the states.  

   For the case in which the radicals are electrons �� � ��. Thus, the corresponding transition matrix in super-states 
representation is reduced to the form:  
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(27) 

moreover, the corresponding Lanczos matrix is:  
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where we use the following definitions:  

 

 
� � ��Δ��2 � 32�2��� ,��12 � �1 � �2 , 

 
�12 � �1 � �2 (29) 

The eigen values of this matrix are:  
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2 � � �16�2��� � �12

2 �2 .  

The frequency has a small variation respect �1 and �2 with a maximum when they are equal. In contrast, the decay rate �3 
is minimum when �2 � �1 and experiences a large variation with ��   � � 1, 2.  

 
Fig. 4: Frequency � and decay rate �3 for two sets of values of Δ� and ����. 
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The eigenvectors are  

 

 

|�1� �

�

�
�
�
�
�
�
�
�

�����2 � 32�2

8����2��12
�√2�Δ��2�12 � ��16�2 � �12

2 � �1���3 � √2�12��

�
�����2 � 32�2

8����2��12
��Δ��2 � 16�2 � �12

2 � �1 � √2�12�3�

�
1

8����12
��Δ��2�3 � 32�2��3 � √2�12��

1 �

�
�
�
�
�
�
�
�

 

(32) 

 

 

 

|�2� �

�

�
�
�
�
�
�
�
�

�����2 � 32�2

8����2��12
�√2�Δ��2�12 � ��16�2 � �12

2 � �1���3 � √2�12��

�����2 � 32�2

8����12
��Δ��2 � 16�2 � �12

2 � �1 � √2�12�3�

1
8����12

��Δ��2�3 � 32�2��3 � √2�12��

1 �

�
�
�
�
�
�
�
�

 

(33) 

 

 

 

|�3� �

�

�
�
�
�
�
�
�
�

�����2 � 32�2

8����2��12
�√2�Δ��2�12 � �16�2 � �12

2 � �1���2 � √2�12��

�
�����2 � 32�2

8����12
��Δ��2 � 16�2 � �12

2 � �1 � √2�12�2�

1
8����12

��Δ��2�2 � 32�2��2 � √2�12��

1 �

�
�
�
�
�
�
�
�

 

(34) 
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|�4� �

�

�
�
�
�
�
�
�
�

�����2 � 32�2

8����2��12
�√2�Δ��2�12 � �16�2 � �12

2 � �1���2 � √2�12��

�
�����2 � 32�2

8����12
��Δ��2 � 16�2 � �12

2 � �1 � √2�12�2�

1
8����12

��Δ��2�2 � 32�2��2 � √2�12��

1 �

�
�
�
�
�
�
�
�

 , 

(35) 

where 

 

 

�1 � ��Δ��4 � �Δ��2�32�2 � 2�12
2 � � �16�2 � �12

2 �2 ,  

 

 

�2 � ��12
2 � �Δ��2 � 16�2 � �1 , (36) 

 

 

�3 � ��12
2 � �Δ��2 � 16�2 � �1 ,  

 
STEADY STATES 
 
 We have a steady state when the density operator that involves all information of the system has a time derivative that 
vanishes, see Eq. (1). In the discrete representation we are working with, the Lanczos representation, ����� � 0 leaving a set 
of simultaneous equations for the components of the vector �� � ��1  �2  �3  �4��. The condition for the existence of steady 
states, ����� � 0, means that the determinant of the Lanczos matrix, ���, vanishes, permiting us to find the solution of the 
constitutive set of simultaneous equations for ��. The process results in the condition: 

 

 
det � ���� � �Δ��2�12

2 � 4�1�2�16�2 � �12
2 � � 0 . (37) 

 By solving the above equation for �2, we get three values for it but the real one is:  

 

 

�2 �
�4 � ����2 � 8�1

2

12�1
�

8����2�1
2 � 768�2�1

2 � ����4 � 16�1
4

12�1�4
 , (38) 

 where the following definitions were employed:  
 

�4 � ��1 � �Δ��6 � 64�1
6 � 96√3�5�1/3 , 

 
�1 � 4�1

2�3�Δ��2��Δ��2 � 96�2� � 4�1
2�576�2 � 3�Δ��2�� , 
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�5 � ��1
2�4�1

2�2 � �Δ��6 � 16�Δ��4�2 , 

 
�2 � �Δ��2�3�Δ��2 � 4�80�2 � 3�1

2�� � 16�16�2 � �1
2�2 . 

 
 A plot of �2 for steady states is found in Fig. 5. Note that �1 and �2 have opposite signs. We also observe that these 
values become enormous around �1 � 0 and � � 0.  

 
Fig. 5: Values of �2 for a steady state, and Δ� � 0.1. 
 
The set of resultant simultaneous equations for � is  

 

 

�1�1 � �
��

2√2
�2 � 0 , 

 

 

 

�
��

2√2
�1 �

1
2

�12�2 �
�

2√2
��3 � 0 , (39) 

 

 
�

2√2
��2 �

����2�2 � 16�2�12

�2 �3 � 2√2
�� ��12

�2 �4 � 0 , 
 

 

 

2√2
�� ��12

�2 �3 �
64�2�2 � ����2�12

2�2 �4 � 0 . 
 

The resultant solution to this system of simultaneous equations, under condition Eq. (38) is  

 

 
�1

�4
� �

�����8 � ����6�12�1
2 � �8� � ����4�3 � 4����2�1

2�4 � 32�1
2��5��

16√2��1
2�8�6

. 
(40) 
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Fig. 6: Values of the different population of spin states, �1/�4,  �2/�4  and �3/�4 for a steady state with Δ� � 0.1. 
 
For �2, we have that  

 

 
�2

�4
�

�
�3 �8��10Δ� �

�7�8

2��10��
�, 

(41) 

where  

 

 
�3 � 48�1

4 � 1280�2�1
2 � 8�1

2�8 � �8
2 , 

 

 
 

�4 � 16�1
4 � 16√3��7 � 4�1

2�8 � �8
2 � 224�2��8 � 4�1

2� , 
 

 

 
�5 � √3��7�4�1

2 � �8� � 6144�4�1
2 � 16�2�40�1

4 � 8�1
2�8 � �8

2� , 
(42) 

 

 
�6 � �Δ��4 � 768�2�1

2 � 16�1
4 � 20�1

2�8 � �8
2 � �Δ��2�8�1

2 � �8� , 

 

 

 
�7 � �11�64�2 � �Δ��2� � �Δ��2�1 , 

 

 

 
�8 � �11��Δ��2 � 16�2� � 16�2�1 , 
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and �3 is  

 

 
�3

�4
� �

64�2�11 � ����2�12

4√2��10��
 , (43) 

here we used the following definitions:  

 

 

�6 � �4�1
2�5 � �Δ��4��Δ��2 � 16�2� , 

 

 

 

�7 � �16�1
2�6 � �Δ��4��Δ��2 � 4�4�2 � 3�1

2�� , 
 

 

 
�8 � �16�1

2�7 � �Δ��4��Δ��2 � 12�1
2��1/3 , 

 

 

 
�9 � ��8 � �Δ��6 � 64�1

6 � 96√3��1
2�6�

1/3
, (44) 

 

 

�10 �
1

12�1�8
��Δ��4 � 8�1

2�2�1
2 � �Δ��2 � 96�2��, 

 

 

 

�11 �
�9

12�1
�

����2 � 8�1
2

12�1
� �10, 

 

 

 

�12 �
1

12�1�9
��1

2�8�Δ��2 � 768�2 � 16�1
2� � �Δ��4� , 

 

 

 

�13 � 2�Δ��3 ��1 �
����2 � 8�1

2

12�1
� �12 �

�9

12�1
� , 

 

where  

 

 
�5 � 3�Δ��4 � 4�Δ��2�80�2 � 3�1

2� � 16�16�2 � �1
2�2 , 

 

 

 
�6 � 4�16�2 � �1

2�2 � �Δ��2�80�2 � 3�1
2� , (45) 
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�7 � 3�Δ��2�24�2 � �1

2� � 2�288�2�1
2 � 2�1

4 � 3√3��7� , 
 

 

 
�8 � 4�Δ��2�1

2�3�Δ��2 � 288�2�1
2� � 16�1

4�576�2 � 3�Δ��2� . 
 

 

A plot of these quantities is found in Fig. 6. Note that these amounts decay very fast when increasing both ���� and the 
magnitude of �1. 
  
TIME EVOLUTION 
 
 We consider a spin-correlated RP evolving under the influence of isotropic electron-nuclear hyperfine interactions 
and the isotropic Zeeman interactions of the electron spins with a static MF. The coherent evolution of the RP, described by 
a spin density operator �����, is governed by the spin Hamiltonian Eq. (1). The spin evolution arising from the difference in 
the two electronic g-values and from the nuclear Zeeman interactions is negligible respect the MF applied. We assume that 
the exchange and dipolar interactions between the radicals and all spin relaxation process may be neglected. According with 
their spin evolution, the two radicals undergo rapid translational motions and are assumed to recombine in a 
diffusion-controlled manner whenever they encounter in a singlet state but to be mutually nonreactive in the triplet state. We 
treat this reactions-diffusion process using the exponential model [24, 25]. In this approach, the two radicals of a 
spin-correlated pair undergo a single encounter, with a distribution of encounter times given by exponential function 
���� � �����, with � is a first-order rate constant. A stochastic Liouville equation will implement the spin evolution in a 
super-operator basis. Applying MF and including the multiplicity of the spin of the intermediate RP and introducing the spin 
correlation, we can study the MF influences over the RP. A pair of any spin carriers is a multi-spin system with a manifold of 
a spin state. The chemical reactions select those of them which are spin-allowed; spin-forbidden states undergo magnetically 
induced spin conversion. Thus, any multi-spin pair is a spin-selective system. The MF affects the recombination probability 
of a geminate RP. The effect arises from the time evolution of a coherent state and the spin selectivity of the recombination: 
RP is created in a triplet electron spin state and only can recombine in the singlet state. Neither the singlet nor the triplet spin 
states are Eigenstates of the Hamiltonian and the singlet probability, therefore, oscillates in time, since coherences are 
created during the time evolution.  It is introduced the Lanczos vector space where vectors are expanded in a super-operator 
basis ����|�, �����|� satisfying the relations Eq. (25) to perform the calculation. Using the transition super operator, we 
obtain the eigen value equation for |���� eigenvectors  

 

 
�|��� � ��|��� , ��|���� � ��|���� , 

 
����|�|��� � ������|���, (46) 

where any state can be expanded in the super state basis using the orthonormality and closure relations  

 

 
|��� � � |

�

������|��� , 
(47) 

 
 To evaluates the matrix elements of the quantum transition super operator ��, it is used the Eq. (46)  
 
 

 

 
��

�

���|�|������|��� � ������|��� , 

 

(48) 
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����|�|����1������1|��� � ����|�|��������|��� � ����|�|����1������1|���

� ������|��� ,  

 
 

��������1|��� � ���� � �������|��� � ����1�����1|��� � 0 , 
 

where the Lanczos parameters are evaluated using the following inner products  

 

 
���1���|���1� � ���|��|��� � �����|��� � �����|���1� , 

 

 
���1����1|���1� � ����1|��|��� � ������1|��� � ������1|���1� , 

 (49) 

 
���1����1|���1� � ����1|��|��� � ������1|��� � ������1|���1� . 

 
 We might be able to compute the eigenvectors of the original matrix by solving the above simultaneous equations. 
Time evolution of Lanczos vectors is achieved with the help of the eigenvectors of the Lanczos matrix as follows. As above, 
�� are the eigenvalues and |���� the eigenvectors, we have two ways of writing the identity operator,  

 

 
�̂ � � |

�

������| , �and ��̂ � � |
�

��������| . 
(50) 

Therefore,  

 

 
���������|��� � �̂����������̂|��� � ������|��� 

 
� � ������

�

|��������|��� � � �����

�

|��������|��� , 

 
���|��������� � ���|�̂����������̂ � ���|������  

 
� ��

�

��|������|��������| � � �����

�

���|��������| . 

 

(51) 

 For our RP dynamics model, this quantity can be calculated analytically. In the case of the initial Lanczos vector 
�0���, we find that  
 

 

 

�0��� � �
2�0

2����12/2����

�
2�0

2����12/2

����3�2 ����
�, 

(52) 

where  

 

 
���� � �11 cos � ��� � �12 sin � ��� � �13 cosh � �3�� � �14 sinh � �3�� , 

 
���� � �21 cos � ��� � �22 sin � ��� � �23 cosh � �3�� � �24 sinh � �3�� , 

 

(53) 

moreover, we have used the following definitions:  
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�11 �
1

64����4�12
2 �2 �2�Δ��2�12

2 �1 � �16�2 � �1�2�2� , 

 

�12 � �
1

16√2����4�12�2
��16�2 � �1��16�2 � �Δ��2 � �1���2 � �1� , 

�13 �
1

64����4�12
2 �2 ��3 � �4� , 

 

�14 �
1

16√2����4�12�2
��16�2 � �3��16�2 � �Δ��2 � �3���3 � �2� , 

 
�21 �

�1 � �2

32√2�12
��Δ��2 � 2�16�2 � �1�� , 

 

�22 � �
��2 � �1

64�12
2 ��16�2 � �1��2�12

2 � �1 � �2� � 2�Δ��2�12
2 � , 

 
�23 �

�3 � �2

32√2�12
��Δ��2 � 2�16�2 � �3�� , 

 

�24 �
��3 � �2

64�12
2 �2�Δ��2�12

2 � �16�2 � �3��2�12
2 � �3 � �2�� , 

 

(54) 

 
where  

 

 
�1 � �Δ��2 � 2�16�2 � �1� , 

 
�2 � 2�12

2 � �1 � �2 , 
 

�3 � 2�Δ��4�12
2 � 4�Δ��2�12

2 �16�2 � �3� , 
 

�4 � �16�2 � �3�2�2�12
2 � �3 � �2� . 

 

(55) 

 
 The �� for � � 0,1,2,3 represent the populations of the several species in those different spin states. A weak (�
1 mT) MF typically enhances the efficiency of � � � interchanges (the so called low field effect [26]). For a singlet RP, a 
weak field reduces the probability of recombination from the singlet state and consequently boosts the number of free 
radicals that escape from the reaction [27]. To estimate that effect we use the following data: the � factor for the electron is 
�� � 2.002319304 [28]. The nuclear magnetron (��� is defined with the mass of proton (��) as follows:  
 

�� �
�ħ

2��
� 5.05079 � 10�27���1, 

�� � 1.67262 � 10�27�� . 
 
 The difference between RP energies in the singlet and triplet spin states depends on if exists and not an external 
magnetic field. When applied magnetic field is absence, singlet-triplet mixing is fast and involves all three triplets sub-states 
(region I). When the magnetic field is applied, two of the three triplets levels, namely ��1 and  ��1, become progressively 
decoupled, restricting � � � interchanges to the � and �0 states (region II). In our case, the exchange relation is given by 
 
 ���� � �0����. 
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The energy of the |� � and |�� � states coincide when  

 

 

����� � ���� � ���� , �i. e. ����� �
1
2

����� 

� ��� � �
1
�

ln �
���

2�0
��. (56) 

In the region I we have that  

 

 

����� � �0���� � �,�� �� � �
1
�

ln �
�
�0

� , (57) 

for some small �.  
 
CONCLUDING REMARKS 
 
 In this letter we have been concerned with the determination of local and collective properties of the spin state of a 
quantum mechanical system ascribed to a RP. We use the Lanczos method to evaluate the Eigen-system and the SPo in the 
damped two-level system approximation. The method was used to assess the dynamic of the RP system immersed in an MF. 
In the quantum mechanical model the associated Hilbert space has been projected onto a reduced subspace to obtain the 
maximum Eigen-system. Mathematically, the physical concepts involved are the distribution of SPo of a vector living into 
the reduced Hilbert space. In general, the Hamiltonian employed is renormalized in some vague way to take into account, at 
least partially, the physical information lost because we do not use the whole space [21]. In fact, we use a finite vector space, 
where is supposed that the Hamiltonian is relevant for our quantum mechanical system. 
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