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On the Remainder of Lagrangian Interpolation Formula

I. Guerrero-Moreno, J. López-Bonilla and S. Vidal-Beltrán
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Abstract: We give an elementary deduction of the remainder term in the Lagrangian interpolation, with
applications via explicit Green functions. The corresponding error term for the finite Taylor series is deduced
as a particular case.

Key words: Interpolation by polynomials, Green’s function, Finite Taylor series.

INTRODUCTION The Rolle theorem applied to (5) allows obtain the

If we have the data points (x , f  = f(x ), j = 1,2,...,n thenj j j

the function f(x) can be approximated by a polynomial of (6)
degree n – 1 constructed via the Lagrangian interpolation
[1, 2]: thus the goal is to determine the function:

(1) (7)

with the fundamental polynomial: In Sec. 2 we give an elementary process to obtain

(2) the corresponding Green functions for two and three data

such that:

(5) we see that G  = 0 for x , then G is a polynomial of

(3)

The remainder term in this Lagrangian expansion is
given by  (x) = f (x) – P  (x), satisfying a differentialn n

equation with boundary conditions:

(4)

whose solution can be written in terms of the Green’s
function [2-7]:

(5)

following estimation:

explicitly the integral (7), which in Sec. 3 is verified with

points.

Remainder of Lagrange’s Polynomial Expansion: From
(n)

degree n – 1 in x and we know that (7) is applied in the
form , therefore g(x) is a

polynomial of degree n in x and the x  are its roots, hencej

(7) has the structure:

(8)

and from (5), (7) and (8):

,

that is:

(9)
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thus (6) and (9) imply the following expression for the remainder term of Lagrangian interpolation formula [2]:

(10)

Green Functions for Two and Three Data Points: If n = 2 then the Green function verifying the properties (5) is given
by:

(11)

therefore:

in according with (9).

For n = 3 we must consider two regions with their corresponding Green function:

(12)

and the verification of  also is in two regions:

in harmony with (9).

For the general case the Green function is given by [2]:

(13)

for the intervals 
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If we consider that the data points are equidistant 3. G. Green, G., 1854. An essay on the application of
and that they all collapse into x  = a, then (10) implies the mathematical analysis to theories of electricity and1

remainder term for the finite Taylor expansion: magnetism,  J.  Reine   Angewand.  Math., 39: 73-89;

(14) 4. Greenberg,  M.D., 1971. Application of Green’s

thus the Lagrangian interpolation is transformed to Taylor New Jersey.
extrapolation. 5. Schwinger, J., 1993. The Greening of QFT: George
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