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On the Remainder of Lagrangian Interpolation Formula
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Abstract: We give an elementary deduction of the remainder term in the Lagrangian interpolation, with
applications via explicit Green functions. The corresponding error term for the finite Taylor series is deduced

as a particular case.
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INTRODUCTION
If we have the data points (x,, f;= f(x),j = 1,2,...,n then
the function f{x) can be approximated by a polynomial of

degree n — 1 constructed via the Lagrangian interpolation
[1,2]:
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with the fundamental polynomial:

Fy(x)=(x—x)(x—X))..(x—x,), F,(x)=0, Vj, (2)

such that:

o= o ()= Fyx), o) =0, 2k,
x—xk

pk<x>:(;’;k(§;)), ) =85 )

The remainder term in this Lagrangian expansion is
given by 1, (x) = f (x) — P, (x), satisfying a differential
equation with boundary conditions:

N =M@, () =0, j=l..n, )

whose solution can be written in terms of the Green’s
function [2-7]:
xﬂ d
m,=[ " 1O G G0 E) =38,
X X
G(x;,E)=0, V. 5)

The Rolle theorem applied to (5) allows obtain the
following estimation:

M) = "0 GO e, e, (©)

thus the goal is to determine the function:

¢ =" G &), g(x)=0, j=1.n )

In Sec. 2 we give an elementary process to obtain
explicitly the integral (7), which in Sec. 3 is verified with
the corresponding Green functions for two and three data
points.

Remainder of Lagrange’s Polynomial Expansion: From
(5) we see that G* = 0 for x = £, then G is a polynomial of
degree n — 1 in x and we know that (7) is applied in the

form X, X , therefore g(x) is a
e)=["G dz+[ "G, ae. ¢
1

polynomial of degree # in x and the x; are its roots, hence
(7) has the structure:

g(x)=c(x—x)(x = Xxp)..(x — x,), (®)
and from (5), (7) and (8):
g™ (x)= jx” GMag = jx” S(x—E)E =1=nle, »

that is:

[ 6= £y, ©)
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thus (6) and (9) imply the following expression for the remainder term of Lagrangian interpolation formula [2]:

M4(x) =~ 1D E, (2) (10)
n:

Green Functions for Two and Three Data Points: If n = 2 then the Green function verifying the properties (5) is given

by:
6= Gmx) Gmxm) x>8 G=-Gex)@-w) x<d O
therefore:

[76x)d = [T 6. de+ [ 6 de =3 (x—x) (x—x),

in according with (9).

For n =3 we must consider two regions with their corresponding Green function:

X, SELx,:

6. = (x-x,) [ (x~xg) '_.\'3,-.1:1_' ',..z'.:- ‘-.I'_:\'-.\':,' '._.x':-.\'.‘_"',x; i s &8 <6, :_}(1 _‘_:)2 + .6, x> ¢,
2lxymxy) Wag—x,) (25~ %y) - (12)
X, S§ S 2
__ (amxy) (xmxg) (25—)° WS- = ¥\2 = 4
:G__“" g % 3 ’ 1:81: :G_,"""':[t“\.) *:G"j ..-.....HJ
2 (xg—x,} (xg—x,) 2
and the verification of J.xn Gdé also is in two regions:
X
Fo [* z *3 x *5 e . < - 5 ;
xySxsay [P6dE= [ Godf+ [ 6 dE+ 7,6 dE =2 (x—x)(x-x)(x - x3),
s it s PR S > (% y o (%3 a3 ;
X %% G oy L._ Gd¢ = j 16, dd L-: 26 A8+ [ ,6.d = 2 Fy(x),

in harmony with (9).

For the general case the Green function is given by [2]:

(13)
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for the intervals X; <éx< Xjstr J=1,2,,n =1
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If we consider that the data points are equidistant
and that they all collapse into x, = a, then (10) implies the
remainder term for the finite Taylor expansion:

n,(x) = i' FM)x-a)", xela,x], (14)
n

thus the Lagrangian interpolation is transformed to Taylor
extrapolation.
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