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Abstract: In order to determine

a=[" reou,

, the function f{x) can be tabulated in the points x; specified by

the roots of Legendre polynomials P,(£), thus y; = f (x; ), then the Gaussian quadrature consists in to
approximate 4 with the area under the corresponding Lagrange interpolating polynomial. If the points x; are
twice, then it is also necessary to give the values of the first derivative y and the respective polynomial is
constructed via the Hermite interpolation. Here it is shown in both cases explicit relations to implement the

Gauss technique.
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INTRODUCTION

The various techniques of quadrature try to
determine with the minimal error the integral:

a=[" M

and in this point, the Gauss method (1814) [1-3] is one of
the most efficient because employs the roots & of the
Legendre polynomials [2, 4, 5], leading us to the following
data points in [a, b]:

b+a b-a .
xj:T+ P 5]’ éje[_lyl]’ J:1a21--~ana (2)

where the &, are the zeros of P,(). Then it is constructed
an interpolating polynomial G(x) which approximates to
f(x) in [a, b] and allows to give a value close to (1):

— b 2 _ 1
A:L G(x)dx = bz" I_I[G(x)] déE. ©)

x—>&

Now the question is how to construct G(x): In Secs.
2 and 3 it is indicated the implementation of the
corresponding interpolating polynomial when all the x; are

simple and double points, respectively, looking to
preserve the efficiency of the Gaussian quadrature.
Furthermore, there are shown the resulting expressions for
(3) that give an excellent approximation of the area (1).

Lagrange Interpolation. Simple Points: According to the
Lagrangian technique [2, 6], the following polynomials are
introduced:

a). Fundamental:
Fx)=(x-x)(x-x) ... (x —x,) 4)

b). Auxiliar — Complementary:

F(x)

X—X

(Dj(x): N q)j(xk):(), j?fk (5)
J

¢). Canonical:

Q00 F(x)
Q;(x;)  (x—x)F(x))
and it is simple to prove that under the gauge
transformation (2):

8 ;
==z (5): r= (é_gr) (7)
®;E) Hr;,-

pj(x)= » pi(x) =0, (6)
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So the corresponding interpolating polynomial G(x),
of n-1 degree, adopts the form:
G(x) =y, pi(x) + 3, pa(x) +... 1y, p, (%), ®)

with the basic property G(x,) =y, = f(x,), then (3) implies
the Gaussian quadrature formula for simple points:

b-a

A :Tszkawk’ (9)

-1 1 0] d
wk—m_‘ll #(8)dS

noticing that there exist Tables for the weight factors w,
[7].
As an example of (9), let us consider the calculation
of 4 . ,thatis,a=0,b=4,
[lea

flx) = e,, for the case n=5, then [2, 4, 7]:

£ =—&=—0.9061 798459, &= £ =—0.5384 693101, &,
=0,

w, = w;=0.2369 2688 51, w, = w, = 0.4786 2867 05, w, =
0.5688 8888 89,
(10)

with the corresponding values:
x,=0.1876 4031, y,= 1.2063 9950,
X,=0.9230 6138, y,=2.5196 8405,
X,=2.0000 0000, y,=7.3890 5610,
X, =3.0769 3862, y, =21.6918 9349,
Xs = 3.8123 5969, y, = 45.2571 0562, (11)

and (9) leads to the following approximate value:

4 — 5
i oA _ 12
IO ¢'d, xA=2)" "y =53.59813663, (12)

which can be compared with the exact value 53.5981 5003.

Hermite Interpolation. Double Points: In order to get (2),
the roots (10) are used with 10 decimals, but may be in the
laboratory the instruments do not allow to work with so
many decimals, therefore forcing to the Legendre roots &
[8] to be rounded, so for instance, instead of (10) it could
be employed the values:

& =-&=-0.90, & =-£, =054, £, =0.00,
X = 020, Xy = 092, X3 :2.00, Xy :3,08’ X5 = 380’
(13)
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which together with (9) would give 4 with much more
error than (12) and in this way the Gaussian quadrature
efficiency is lost.

This situation is solved ingeniously [2] just assuming
double points the x, and consequently the
corresponding interpolating polynomial of degree (2n — 1)
is constructed by means of the Hermite technique [9]:

as

6w =2 [wr @+ P )], (14)

where:

PP =[1-2p; (o )= x)1pE (), P2 (x) = (x =3 )pR (%),

(15)
and (9) is modified:
a-e n: ViWr +(1] n: V'kWks (16)
2 k=l 2 k=1
such that:
) 1 ,
iy = @%(fk)_jl(é ~E)DF(E)E,
T (&) -
" o [oi@u -2k (17)

-1
Therefore, when (13) and (17) are used:

Y =y =1.2214 0275
¥y = ¥, =2.5092 9039

w =0.2364 0530 w; =-0.0015 5377
wy, =0.4789 9553 W, =0.0005 8042

y3=y3=738905609 w;=0.56919830 i, =0
V4 =14 =2175840240 wy=w, iy = =1y
s =5 =447011 8449 w5 = s =¥,

(18)

then the expression (16) for double points gives the
value 53.5981 3516, with an error of the same order that
in (12), so the Gaussian quadrature efficiency being
restored.

CONCLUSIONS

When the Gauss quadrature is applied, two situations
can be arised:
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It may be posible to manage the Legendre roots with
enough significative numbers, so (9) is an excellent
approximation for the corresponding area, that is,
such roots do participate as simple points.

The zeros £ may be rounded in order to reduce its
number of decimals, then in this case it must be used
(16) for double points to get an error of the same
order of magnitude that (9).
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