
American-Eurasian Journal of Scientific Research 12 (2): 69-75, 2017
ISSN 1818-6785
© IDOSI Publications, 2017
DOI: 10.5829/idosi.aejsr.2017.69.75

Corresponding Author: N. Umakanth, Department of Computer Science and Engineering, Mepco Schlenk Engineering College,
Sivakasi, India.

69

Secure Blind Storage with Multiple User Access Provision

P. Golda Jeyasheeli, Nadar Jasmine Sunderraj and N. Umakanth

Department of Computer Science and Engineering, Mepco Schlenk Engineering College, Sivakasi, India

Abstract: In cloud computing, the client has to secure their private data from the server. To solve the concern,
a storage scheme is used called as a Blind Server. Blind Server will act as a secured cloud storage service such
that it does not know how the files are organized neither the size of each file nor the data in the file. The server
will be free from computation overhead and will only act as a storage server. Two level security has been given
to the data stored in the cloud by the client. In the first level, data has been encrypted and stored in the cloud.
In the second level, the file is split into multiple fixed size block and stored in pseudo-random location in the
hard disk so that the server will not be able to learn about which are the blocks that make up a file. This model
of storage system is simulated on CloudSim. In the prior work, there is no information maintained about the
blocks that contains the various splits of a single file and also there is no multiple user access provision. In the
proposed scheme, the information about the blocks that hold the data of a file in the hard disk is stored in an
array which is maintained by the client. By this mechanism, we have reduced the time taken for accessing a file
by downloading and decrypting only the blocks that constitute the file along with multiple user access
provision for the data stored in the cloud storage.

Key words: Blind Server CloudSim Computation overhead A storage scheme Pseudo-random location

INTRODUCTION access a file by the client. This is achieved by reducing

Now-a-days people have become habitual in performed by the client. This model is simulated on the
outsourcing their data from their personal devices to the CloudSim framework.
cloud servers because of the shortage of storage space in CloudSim provides the essential entities to simulate
their personal devices like mobiles, personal computers, a storage server which helped us in constructing the blind
laptops and tablets. Therefore an additional responsibility server model.
is added on the client side to secure their sensitive data
from the servers which might turn to be an in genuine one. Related Work: Multi-Authority Attribute-Based
To achieve this, a higher level security is given to the data Encryption (ABE) system is proposed in [1-2]. The
in the cloud. The first level security implies encrypting the different security challenges in a Public cloud is
data and then storing in the cloud. The second level discussed in [3]. There are many ways for storing data in
security is to store the data in arbitrary locations in the the cloud in a secured way which is dealt in [4-6]. An
server. The Blind Storage scheme proposed by Naveed identity based hierarchical model for cloud computing and
et al. [1] is found to be a secured storage scheme which a corresponding encryption scheme is introduced in [7].
provides security to the data stored in the server against A high performance, distributed ORAM-based cloud data
honest but curious servers. But the time required to store is proposed in [8]. A dynamic searchable symmetric
access a file on the client side is influenced by a sequence encryption scheme has been introduced in [9]. The
of download and decrypt operations where decryption is integrity of the data stored in the server has to be verified
found to be a computationally intensive task. Therefore by the client, for which a security mediator has been
our main contribution is to reduce the time required to discussed in [10]. The process of uploading data to the

the number of download and decryption operations to be

CLIENT

 SERVER
Blind Server

Upload

Download

Split file into
multiple files

Decrypt and
merge the split

files

Am-Euras. J. Sci. Res., 12 (2): 69-75, 2017

70

server has motivated researchers to design a secured data holds the key is seen as an authenticated client to
storage on the server. Naveed et al. [1] has designed such download the data from the server. The key generation
a scheme where the file is split into multiple fixed size will take place only once for each file and has to be stored
blocks and the file that has been split into multiple files in the client for further access to the file.
occupy multiple blocks in the storage array. The similar The server does not have to perform any
Blind Storage scheme is also used in [11]. But there is no computation. It is free from computation overhead and will
data collaboration service proposed for the blind storage have the work of acting only as a storage server. All the
scheme in the existing work. A data collaboration scheme computation is done on the client side. Hence the server
for a group of users has been proposed in [12] which will not be able to learn about which are the blocks that
enables the file to be shared among a group of users. contains the various split of a single file as all the
During the process of upload, a longer sequence of computation is done on the client side.
pseudo-random numbers are generated using a seed from
which a subset is generated which consists of only free Blind Server: The model consists of a client and a
blocks and the size of the subset is equal to the size of the server. The server will only be used for storage purposes.
file in terms of number of blocks required to store the file. All the computation will be done by the client only.
The file is finally stored in those blocks. Fig. 1 represents the overall design of a Blind Server

During the download operation, the pseudo-random system.
sequence is again generated using the seed and a The storage is constructed such that it consists of a
minimum of k blocks have to be downloaded and number of blocks. Each block is of a fixed size. The file to
decrypted in every transaction. Then the decrypted be stored by the client on the server is split into many
blocks will be matched for file id, when the first block parts each split file will be equal to the block size. Each
containing the file id is found the size of the file is split file will be stored in the server in an unsystematic
retrieved from this block and the remaining blocks have to order so that the server will not have the knowledge about
be downloaded and decrypted until all the blocks of the size of the file and about where the files are stored on the
file has been found. This process involves an overhead of server. The contents of the file are encrypted therefore the
downloading and decrypting blocks that does not server will not know about the file’s contents.
constitutes of the file to be accessed. Decryption is a The server is given the name blind because even
computation intensive operation on the client and if though it stores the files it cannot have an access to the
avoiding the download and decryption of unwanted data in the files and it will neither know about which are
blocks is achieved then the time required to access a file the blocks that have to be merged to access a single file
on the client side can be significantly improved. as the files splits are stored in an arbitrary order.

System Design: A hard disk consists of many blocks. array consists of B blocks. The size of the storage array
The file to be stored on the cloud is split into multiple files should be fixed based on number of blocks needed for the
of a fixed size such that the size depends on the size of the files to be uploaded. In the prior work [1], the size of the
block. In general the block size varies from 256 bytes to array is set to be 4 times as many blocks as total data
512 bytes. But the size of the block can also be fixed to a blocks to be stored.
higher range by which the number of downloads will be
minimized.

The file is split into multiple files of equal size (size of
split depends on the size of the block in a hard disk) then
these splitted files are stored in random block locations in
the hard disk. The random locations are generated by
setting a seed value.

Initially, for every file to be uploaded we will generate
a File id and a key. These keys will be held by the client
and will be useful for the download operation to be
performed on the files stored in the server. The one who Fig. 1: Blind Server System

A storage array has to be constructed such that the
n

Am-Euras. J. Sci. Res., 12 (2): 69-75, 2017

71

Client Side Computation: All the computation The Storage array S will consist of B blocks of b bits
required to upload the files to the server and downloading each. For each file to be stored on the server, do the
the files from the server has to be performed on the client. following:
The below given steps is a summary of the Blind
Server algorithm. The algorithm will be discussed in Storing the Files in the server:
detail in the next section. For each file the client wants to
store in the server, the following steps have to be Split the file into equal size blocks.
performed: For every file among the set of files to be stored on

Divide the file into equal parts according to the block time generation keys.
size. For eg: If the block size is 512 bytes then the file Set the seed for generating arbitrary location of
has to be divided accordingly such that each file split blocks in the storage array S.
is 512 bytes.
Generate a file id for the file. = File id * key (1)
Generate a key for the file.
The file id and the key generated is to be stored on Depending on the number of blocks in the storage
the client side. array S generate a lengthy sequence using the seed.
Set the seed. The seed value is the product of the file From the lengthy sequence take a subset of Q block
id and key. numbers.
Using the seed generate an arbitrary sequence of
bock numbers. Q B (2)
Check which are the blocks that are empty among the
sequence of blocks generated and take the first F The size of Q is given by,S

blocks from the sequence generated. where, F is theS

size of the file in terms of blocks i.e the number of Max (* F ,) (3)
blocks required to store the complete file.
Perform Encryption on the data to be stored in the where, is the incremental parameter which is set to be
cloud. The file to be stored on the cloud will contain greater than one.
encrypted data.
If F blocks are found to be empty among the , is the minimum number of blocks transmitted in everyS

sequence generated then upload the files in those upload and download operation.
blocks.

Encryption and Decryption of data is done using the , Q will take the n unique numbers and the size of
AES algorithm. Encryption is done before uploading the n= Size of(Q).
file on the cloud server and Decryption is done after The set Q should be chosen such that it satisfies
retrieving the file from the server. two conditions:

Let S be the storage array in the server that consists A minimum of F blocks in the storage array S
of B blocks of block size B each. Each block will store pointed out by the set Q should be free.n s

each split file. The split file will be containing encrypted Minimum one block in the storage array S pointed
content which will make the server unable to know the out by set Q should be free Q Q .
contents of the file.

The server will reinforce only two operations storing Size of Q1 = (4)
the data and allowing the client to retrieve the data. There
will be no computation to be performed by the server and The generation of set Q will be useful for
the server will be free from computation overhead. downloading the files from the server.

Blind Server Algorithm: The client can store a set of files If the above two conditions is not satisfied then
on this blind server. The server will be blind to see the adjust your parameter so that the condition is
content of the files and the size of the individual files. satisfied.

n

the server generate file id and key which will be one

0

0 n

0

s

From the arbitrary sequence generated by the seed
0

0

0

S

0

1 1 0

1

Am-Euras. J. Sci. Res., 12 (2): 69-75, 2017

72

Choose a set Q in such a way that the block numbers = File id * key (7)2

pointed out by Q are all free and that the size of Q =2 2

F .S

Encrypt the data in the files.
Store the F file splits onto the F blocks in theS S

storage array.

Data-Sharing Among a Group Of Users: The data stored
in the blind storage can be shared among a group of
users. This is achieved by one to many encryption
paradigm. The root user encrypts data with multiple
recipients public keys and stores it into the cloud server.
So only those intended recipients can decrypt the data
using their own secret key. The root user only takes
public keys of the recipients as input to encrypt the data.

The private key is given to the intended recipients
from the root user. The private key is generated by the
root user and provided to all the intended recipients.
The root user picks a master key for itself. The master key
is a random seed picked by itself. A public key is
considered as the e-mail id. The root user generates
private key for the other users with whom it wants to
share the file with, generally they are known as the
intended recipients. The private key is generated for the
intended recipients by the root user as follows:

P = P + M H (5)user1 ruser ruser pbkuser1

wqhere, P is the private key generated for user1, P isuser1 ruser

the private key of the root user, M is the master key ofruser

the root user and H is the hashed value of the publicpbkuser1

key of user1. In the same way the root user generates
private keys for all the n users with whom the root user
wants to share the file with. The Ciphertext is set as
follows:

C = [mH , mH , H (m), F H()] (6)pbhuser1 ruser

C is the Ciphertext, m is a secret value set as m = H(, F)
where F is the data in the file. is picked in a random way
where {0, 1} .n

Downloading Files from the Server: The client who wants
to access the file from the server should hold the file id
and the key generated for each file. The client refers to the
root user and the intended recipients with whom the root
user wants to share the file stored in the cloud storage.
Any user without the file id and key will not be able to
access the file from the server and will be treated as an
unauthorized one. Compute the seed using the file id and
key.

Now evaluate whether the seed is a valid one
(i.e evaluate whether such a document has been uploaded
in the server). For each file stored in the server an array is
maintained which consists of the seed value and the block
locations in the hard disk in which that particular file was
uploaded. When the user wants to access a file the initial
step is to generate the seed. The root user is the one who
uploads the file to the blind storage initially. Therefore at
the time of private key generation to the n users the root
user should also send the seed value to the n users so
that the file can be downloaded from these n users later
when they want an access to it. Then the seed is
evaluated and found whether it is a valid one. If such a
seed value is not maintained in the array, then the seed is
said to be an invalid one i.e such a file using that seed
was not uploaded in the server. This may happen when an
unauthorized user tries to access the file or when an
authorized user gives wrong file id or key generated for
that file.

If the seed value is found to be a valid one then the
array maintained for that file will hold the seed value along
with the pseudo-random locations for that file. The block
locations in the hard-disk in which various splits of that
file is stored can be retrieved from the array and then the
file can be downloaded from the server. The downloaded
files will then be decrypted and merged to form the
original file. To decrypt the data the root user has to first
calculate the . Then compute Cp H (), the resultant
will yield the file data F, where Cp= F H () and is the
input for the decryption process. The intended recipients
of the file will perform the decryption as follows: Firstly,
computes the H . Then computes followed by thepbkuser

computation of Cp H () = F. After accessing the file
the file contents have to be encrypted and then upload
the file to the server.

RESULTS AND DISCUSSIONS

The model of the blind server was implemented using
CloudSim. CloudSim is used as a foundation for
implementing the Blind Server scheme. NetBeans 8.0.2 IDE
is used.

File Split: The first file named ‘Cohen’ is of size
8,880Kb. The file has been split into 10 multiple files. Nine
files each of 977Kb and one file of 91Kb. The single file
needs ten blocks in the hard disk to store the 10 multiple
splits.

Am-Euras. J. Sci. Res., 12 (2): 69-75, 2017

73

The type of documents that has been used are text
documents. The hard disk was created such that it
consists of 51 blocks. The blocks have been numbered
from 0 to 50. Each block is of 1Mb each. A set of five files
were uploaded. The files taken were of size (10Mb, 3Mb,
7Mb, 2Mb, 3Mb) shown in Table 1. Each uploading and
downloading of files required only one round of
communication whereas in prior scheme [1] two round of
communication would be needed for large files.

To make efficient use of the blocks in the hard disk,
the value of was set to (3, 4, 5). Each time the parameter
varied there was a difference in the number of blocks filled
in the array for the same set of files. Table 2 gives the
details of the uploaded files their respective size and the
block position occupied by each file in the hard disk.

To effectively use all the blocks in the hard disk
we uploaded 5 files each of 10 Mb. Now our hard disk
consists of 51 blocks therefore among the 51 blocks, 50
blocks should contain files. But we found that when the
value of is varied the blocks in the hard disk is not
utilized effectively. This is shown in Table 3 where the
row values 10B, 9B represents 10 Blocks and 9 Blocks
respectively (B represents the blocks in the hard disk).

We are uploading a group of files, there is no problem
in uploading the first four files of 10 Mb each but when
the fifth file (10 Mb) is uploaded it occupies only 9 to 4
blocks in the hard disk even when empty blocks are
available in the hard disk. This happens because plays
a major role in declaring the size of the subset Q which0

consists of pseudo-random locations i.e the randomly
chosen block locations from the hard disk. In order to
make efficient utilization of all the 51 blocks in the hard
disk, we tested different values for . The values used for

 were (5,4,3,2). Table 3 discusses about the different
values taken for . The parameters should be chosen such
that all the blocks in the hard disk are utilized efficiently i.e
when empty blocks are available then they must be used
effectively and the files have to be uploaded successfully.
When empty blocks are not available and we wish to
upload additional group of files into the server then the
size of the storage array in the server has to be increased.
In the prior work [1] they have proposed to set the value
of the storage array to be 4 times as many blocks as the
total blocks to be stored. But this will lead to overheads
in the storage.

Before increasing the size of the storage array we
have to make use of the storage space currently available
by effectively setting the parameter value . This can
reduce the storage overhead to small extent. We can
summarize that the larger the value of , the more
effectively the available blocks in the hard disk are used.

Table 1: Uploaded Files
File Name Size (no of Blocks)
Cohen 10
Positive 3
CEFd 7
PB 2
CAEE 3

Table 2: Blocks occupied by each file in the hard disk
File Name Size (no of Blocks) Blocks Occupied
Cohen 10 35,42,30,29,7,34,45, 21,9,41
Positive 3 14,25,13
CEFd 7 43,22,1,27,37,39,2
PB 2 28,16
CAEE 3 8,18,49

Table 3: Variation in value
Uploaded Files = 5 = 4 = 3 =2
File 1 10B 10B 10B 10B
File 2 10B 10B 10B 10B
File 3 10B 10B 10B 10B
File 4 10B 10B 10B 10B
File 5 10B 9B 5B 4B

Table 4: Variations in the number of pseudo-random locations generated
Files Pseudo Pseudo Pseudo Pseudo
Up-Loaded locations [52] locations [53] locations [54] locations [62]
File 1 10B 10B 10B 10B
File 2 10B 10B 10B 10B
File 3 10B 10B 10B 10B
File 4 10B 10B 10B 10B
File 5 8B 8B 8B 8B

The subset Q is taken from a longer sequence0

generated. The size of this longer sequence should also
be set efficiently. So, that the subset can be retrieved from
it effectively. The size of the longer sequence was also
tested with different values as shown in Table 4 to
validate the variations in the blocks occupied. In Table 4,
the column Pseudo- locations [52] indicates that the size
of the pseudo-random sequence generated using the seed
was 52 (52 pseudo-random locations have been
generated, from which the subset Q will be taken).0

The value was set to be 5 because using as 5 we
got effective results. We generated pseudo-random
locations by varying the size of the superset from 52 to 61
for which the results weren’t effective but when the size
of the superset was fixed at 62 we got good results. With

=5 and Pseudo-locations [62], we were able to upload all
the five files of 10 Mb each leaving only one block as
empty among the 51 blocks in the hard disk. Further
if the client wants to store additional files in the server,
then the size of the storage array S has to be scaled.

Am-Euras. J. Sci. Res., 12 (2): 69-75, 2017

74

This will reduce the storage overhead as the size of the CONCLUSION
storage array is scaled only after effective utilization of
current blocks in the storage array(hard-disk) whereas in
the prior work it is said to have the size of S to be 4 time as
many blocks as the number of total data blocks to be
stored.

Different values for the sequence and is tested to
check the variations in the blocks occupied. When there
is still empty blocks available for files to be uploaded
there is no need to scale the size of the storage array
which can reduce the storage overhead. Hence the
proposed scheme is said to be effective in terms of the
time taken to access the file on the client side and in terms
of storage overhead.

Communication Costs: All the encryption, decryption key
and the key generated for each file will be stored in the
client. Only the file to be stored and it’s block location has
to be given to the server. There will be only one round of
communication during upload and download whereas in
the prior scheme there will be two rounds of
communication during the download operation when the
size of the file is large. In the first round, blocks will be
downloaded and if size of the file in terms of blocks is
greater than then the remaining blocks have to be
downloaded. These blocks are indexed by the pseudo-
random set Q from which the remaining blocks have to be0

downloaded.
In our scheme there will be only one round of

communication during download as the information
about which are the blocks that constitute a single file is
stored in a data structure in the client. The information
about which are the blocks to be downloaded are then
sent to the server and those blocks can be downloaded
from the server. The process will be repeated for
downloading a set of files from the server. This will
therefore reduce the time taken to access a file on the
client.

Computation Overhead: As there is no computation to be
done on the server, the server is free from computation
overhead. The server will only act as a cloud storage
service. All the computation will be done by the client.
The expensive operation considered on the client is the
encryption and decryption. But this overhead is also
reduced by reducing the number of decryptions to be
performed on the client during download while comparing
to the previous work.

A secured cloud data storage was simulated on
CloudSim. The Client will perform the encryption and the
encrypted data is stored in pseudo-random locations in
the server. The data stored in the cloud can be accessed
by multiple users with the one-to-many encryption
paradigm. The server is free from computation. This is
done at the cost of minimum information leakage to the
server thereby providing a secured cloud data storage.
The future work would be to make the scheme secure
against actively corrupt server.

REFERENCES

1. Naveed, M., M. Prabhakaran and C.A. Gunter, 2014.
Dynamic searchable encryption via blind storage, in
the Proceedings of the IEEE Symp. Secur. Privacy,
pp: 639-654.

2. Lewko, A. and B. Waters, 2011. Decentralizing
attribute-based encryption, in the Proceedings of the,
EUROCRYPT. Berlin, Germany: Springer-Verlag,
pp: 568-588.

3. Ren, Cong Wang and Qian Wang, 2012. Security
Challenges for the Public Cloud Kui, IEEE Computer
Society, pp: 69-73.

4. Roopa, Manjunath, 2013. Secure Way of Storing
Data in Cloud Using Third Party Auditor, IOSR
Journal of Computer Engineering (IOSR-JCE) e-ISSN:
2278-0661, p- ISSN: 2278-8727, 12: 69-74.

5. Anuradha, R. and Y. Vijayalatha, 2013. A Distributed
Storage Integrity Auditing for Secure Cloud Storage
Services, International Journal of Advanced
Research in Computer Science and Software
Engineering, 3(8).

6. Doshi Manasi and Swapnaja Hiray, 2013. Secure and
Data Dynamics Storage Services on Cloud,
International Journal of Advanced Research in
Computer Science and Software Engineering, 3(11).

7. Li, H., Y. Dai, L. Tian and H. Yang, 2009.
Identity based authentication for cloud computing,
in Cloud Computing. Berlin, Germany: Springer-
Verlag, pp: 157-166.

8. Stefanov, E. and E. Shi, 2013. Oblivistore: High
performance oblivious cloud storage, in IEEE
Security & Privacy, pp: 253-267.

9. Kamara S., C. Papamanthou and T. Roeder, 2012.
Dynamic searchable symmetric encryption, in Proc.
ACM, pp: 965-976.

Am-Euras. J. Sci. Res., 12 (2): 69-75, 2017

75

10. Chaudhari Sanket, Akanksha Singh and Sheetal 12. Xin Dong, Jiadi Yu, Yanmin Zhu, Yingying Chen,
Asopa, 2015. Security Mediator Using Blind Yuan Luo and Minglu Li, 2015. SECO: Secure and
Signatures and Key Rotation Algorithm, scalable data collaboration services in cloud
International Journal of Advanced Research in computing, Elsevier Computers and Security,
Computer and Communication Engineering, 4(3). pp: 91-105.

11. Li Hongwei, Dongxiao Liu, Yuanshun Dai, Tom H.
Luan and Xuemin Shen, 2015. Enabling Efficient
Multi-Keyword Ranked Search Over Encrypted
Mobile Cloud Data Through Blind Storage, IEEE
Transactions on Emerging Topics in Computing, 3(1).

