
American-Eurasian Journal of Scientific Research 11 (4): 240-249, 2016
ISSN 1818-6785
© IDOSI Publications, 2016
DOI: 10.5829/idosi.aejsr.2016.11.4.22726

Corresponding Author: Mwalili Tobias, School of Computing and Information Technology,
Jomo Kenyatta University of Agriculture and Technology, Kenya.

240

Application of Backpropagation Algorithms in Predicting
the Quality of Component Based Software Systems

Mwalili Tobias, Waweru Mwangi and Kimwele Michael

School of Computing and Information Technology,
Jomo Kenyatta University of Agriculture and Technology, Kenya

Abstract: Component-based software engineering is a development approach that uses existing software
components as a means of accelerating delivery of quality software systems, within time and budget
constraints. Metrics for evaluating the quality of component-based systems have been developed and
validated. However, most of the existing metrics are based on aggregation models, linear regression and
multivariate modeling techniques. Artificial Neural Network techniques have been found powerful in modeling
Software quality metrics compared to traditional statistical techniques. This study aims at researching on the
applicability of neural network ensembles for analyzing and validating the interface complexity metrics for
JavaBeans components. This study utilizes the Backpropagation training algorithms to predict quality attributes
for component-based systems. Specifically the study the performs an empirical analysis of the performance of
the Backpropagation training methods based on algorithm's rate of convergence and the network's root means
square error.

Key words: CBSE Complexity metrics Quality metrics Backpropagation Training methods

INTRODUCTION network (BPNN), where the weights are modified in the

Predicting the quality of Component-Based Systems The BPNN has been shown to be slow in learning
(CBS) has generated a lot of research interest in the recent convergence and may be trapped in local minima. The
past. This is because of the risks associated the process performance of the network is dependent on other factors
of component selection and integration of components. such as the selected learning rate parameter the
These risk factors are numerous because the components complexity of the classification problem. For faster
are delivered and handled as black boxes. Quality metrics convergence and improved performance, other training
for CBS have been proposed and developed. However, rules have been proposed and implemented. The
most of these metrics are based on aggregation models, improved algorithms fall into two broad categories. The
linear regression and multivariate modeling techniques. rules in the first category use a heuristic technique based
Artificial Neural Network (ANN) techniques have been on the performance of the standard steepest descent
found more adaptive in modeling Software quality metrics algorithm. Under this category, we have gradient descent
compared to traditional statistical techniques [1, 2]. with momentum, dynamic propagation that has a gradient
Theoretically ANNs have the capability to approximate an descent with a momentum and an adaptive learning rate
arbitrary continuous function to a specified accuracy on and the resilient algorithm. The second category includes
any compact set [3]. conjugate gradient, quasi-Newton and Levenberg-

Chauvin [4] introduced the Backpropagation (BP) Marquardt (LM) algorithm. In this work we shall focus on
rule, which is widely used in training a multilayer feed- the the performance of the first category of training rules
forward ANNs. The gradient descent algorithm is the in predicting the quality characteristics of software
most basic training rule for the Backpropagation neural components.

steepest descent direction (i.e., negative of the slope).

Am-Euras. J. Sci. Res., 11 (4): 240-249, 2016

241

Fig. 1: The architecture of a single generic neuron

Fig. 2: The architecture of a MLP neural network

The rest of the paper is organized as follows. Section
2 and 3 gives an overview of CBSE and Backpropagation
training rules. Section 4 outlines related research works,
section 5 deals with research experiment design and
finally section 6 summarizes results, discussions and
conclusion.

Bpnn and Training Algorithms: A neural network is
essentially an assembly of basic computing elements
referred to as neurons. Each neuron is composed of two
units, a summing unit and a transfer function unit. R
inputs, each with a weight (w) plus a bias componenti

(b) are summed up in the summing unit. The output
(n) of the summing unit is then fed into the transfer
function (f) to give the final output (a) of the neuron.
Figure 1 below shows the architecture of a single generic
neuron.

The output of the neuron can therefore be expressed
as in matrix form as equation 1 below

a = f (n) = f(wp + b) (1)

The transfer (activation) function (f) is usually a
nonlinear differentiable function function. The commonly
used activation functions include are Log-Sigmoid and
Hyperbolic Tangent Sigmoid, which are given by the
Equations (2) and (3) respectively.

(2)

(3)

The Multi-layer Perceptron (MLP) is the most
popular neural network architecture in prediction
applications [5]. The MLP architecture has an input layer,
one or more hidden layers and an output layer. The input
layer captures input variables, he hidden layers model a
non-linear relationship between the variables and the
output layer gives the predicted values. Figure 2 below
shows the architecture of a MLP with three hidden
layers.

The process of training the MLP, involves presenting
the network with two vectors, the input vector (p) and the
desirable target output vector (t). During an iteration the
output of the network (a) is compared with target outputi

(t). The weights of the network are then adjustedi

according to a Backpropagation algorithm so as to
minimize the network error given by

E(e) = E(t – a) (4)2 2

There are various algorithms applicable for adjusting
the weights of the MLP network. Which include;

The standard Backpropagation: This method uses the
Gradient descent algorithm where the weights are
adjusted based on the equation

w = – a .g (5)k k k

where, w represents the the change in weights, g is thek k

gradient at any given iteration and g is an adjustable thek

learning rate. This relation implies that the network
weights and biases are adjusted in the direction of the
negative gradient of the performance function.

Backpropagation with Momentum: This method is an
improvement of the standard Backpropagation by adding
a momentum term such that the weights are now adjusted
according to the equation.

w = – a .g + p w (6)k k k k–1

This modification avoids oscillations and provides a
mechanism for escaping from small local minima on the
error surface. Furthermore the introduction of the
momentum term reduces the sensitivity of the network to
fast changes of the error surface [6].

Am-Euras. J. Sci. Res., 11 (4): 240-249, 2016

242

Dynamic Propagation: This method uses the Gradient Lanubile et al., [6] applied neural network applied
descent algorithm with momentum with a combination of pattern recognition techniques classify modules as low or
an adaptive (dynamic) learning rate. The initial network high risk. The outcome of this study showed that neural
output and error first calculated and then using the networks produced better results than statistical
current learning rate, new weights and biases are then techniques such as regression modeling.
recalculated at each epoch as given by: Kurfess et al., [7] performed neural network

(7) quality of legacy systems subprograms. The study aimed

Resilient Propagation: This method modifies the network of its object-orientedness. Results from this study
weight by considering the sign of the partial derivative to demonstrated the viability of neural network techniques
determine the direction of the weight update then multiply in validating metrics for object oriented software systems.
it by the step size as given by: Thwin et al., [8] applied the The Ward neural network

(8) the quality of communications software modules, using

Other MLP training methods include include, quasi- Inheritance Tree (DIT), Number of Children (NOC),
Newton, conjugate gradient, Polak-Ribiére update and Coupling Between Objects (CBO), Response For a Class
Levenberg-Marquardt algorithm. This work presents a (RFC) and Inheritance Coupling (IC).
comparative the performance of the standard Furthermore Aljahdali et al. [9] demonstrated the
backpropagation, backpropagation with momentum, viability of back-propagation and other training
dynamic propagation and resilient and propagation in techniques in predicting reliability of legacy software
predicting the quality the quality of component based modules, based on experimental data.
systems. The performance parameters that will be used Washizaki’s [10] proposed the several metrics for
are, rate of convergence (iterations before convergence) measuring reusability of software components, which
and the network Root Mean Square Error (RMSE) given include:-
by: Rate of Component Observability (RCO) given by

(10)

(9) Rate of component customizability (RCC)

where y(k) and are respectively the expected and (11)
predicted value for a software component quality
characteristic. Self-Completeness of Component’s Return Value

Related Work: Boetticher et al [1] introduced the concept
of neural networks approach software metrics by (12)
modeling the McCabe and Halstead metrics. The study
focused on the performance Backpropagation neural Self-Completeness of Component’s Parameter (SCCp)
network with the quick-drop algorithm in modeling the
McCabe and Halstead metric. Training data sets were (13)
derived from reuse based Ada programs repositories,
Conn [2]. The performance of the algorithm was analyzed Sharma [11] proposed the Interface Complexity
for varying network architectures on fixed size training Metric (ICM). The ICM models the external behavior of
sets. Results from this study indicated that neural network the component as aggregation components methods and
approach was feasible in modeling software metrics. properties complexity factors given by Equation (5)

experiments on categorization and assessment of the

at establishing whether a neural network can be used to
categorize the quality of a legacy sub-programs in terms

and General Regression Neural Network (GRNN) predict

various object-oriented metrics, which included, Depth of

(SCCr)

SNO COMPONENT ISC B ICM SCCR SCCP
1 Gmail 0.58769 0.58 0.5091 0.5273
2 Gcalender 0.5788 0.47 0.5167 0.4500
3 Gdata 0.68442 0.57 0.5287 0.4828
4 Gdocumen ts 0.62953 0.54 0.5490 0.5098
5 Gcontacts 0.39845 0.47 0.0631 0.4775
6 Gspreadsheets 0.77473 0.59 0.5217 0.4435
7 Gsto rage 0.50522 0.46 0.6176 0.5686
8 Paapi 0.27386 0.39 0.4722 0.5000
9 Amazonrequest 0.4427 0.49 0.5600 0.5500

10 S3 0.5004 0.48 0.6154 0.5769
11 Sq s 0.36929 0.56 0.5522 0.6269
12 Ec2 1.55238 0.76 0.6508 0.6349
13 Simp ledb 0.29006 0.45 0.5965 0.5439
14 B lob 0.73334 0.51 0.6636 0.5727
15 Table 0.30318 0.45 0.5854 0.4878
16 Queue 0.53955 0.48 0.6316 0.5000
17 Azurerequest 0.27386 0.47 0.5567 0.5567
18 Sapclient 0.14618 0.39 0.5849 0.4528
19 Ftp 0.23112 0.40 0.6429 0.5143
20 Rss 0.79353 0.52 0.6125 0.6125
21 Smtp 0.15233 0.35 0.6000 0.5333
22 Soap 0.38082 0.39 0.4904 0.4712
23 M im e 0.22685 0.53 0.6452 0.5484
24 Pop 0.20733 0.47 0.5211 0.4225
25 Syslog 1.35463 0.73 0.6190 0.6667
26 Telnet 0.21275 0.46 0.7500 0.7333
27 Who is 0.17239 0.44 0.6071 0.6071
28 Webupload 0.46281 0.44 0.5915 0.5634
29 Webdav 0.55864 0.47 0.6344 0.6237
30 Xmpp 0.98112 0.61 0.6739 0.6304
31 atePicker 0.16701 0.49 0.5419 0.5484
32 PVTree 0.3558 0.51 0.5313 0.6354
33 PVTable 0.51112 0.48 0.5182 0.5992
34 PVCalculato r 0.17544 0.38 0.6364 0.5844
35 PVCalendar 0.98199 0.62 0.5598 0.5837
36 PVCho ice 0.29792 0.40 0.5484 0.5806

Am-Euras. J. Sci. Res., 11 (4): 240-249, 2016

243

(14)

where, CIM is the complexity of the i interface methodi
th

and CP is the complexity of the j property. A and B arej
th

the weight values for methods and properties
respectively.

The complexity of an interface method is computed
based weighed values that are assigned to each return
values or argument according to its data type.

Mwalili et al. [12] proposed the Bounded Interface
Complexity Metric (BICM), for evaluating the complexity
of a software component, given by the equation

(15)

where, CM is the complexity of the i interface methodi
th

and CP is the complexity of the j property. M and Nj
th

represents the count of component methods and
properties respectively while A and B are the weight
values.

To analyze the consistency the components interface
parameter types, we propose a new metric called interface
surface consistency (ISC) that is based on the variability
of the components methods and property complexity and
given as

(16)

where SDM is the standard deviation for complexity of(i)

the i method and SDP is the standard deviation for theth

property complexity. This metric carries overall
information about the consistency of a components
interface.

A high value indicates a rough interface surface and
such a component would be difficult to integrate and
maintain.

The next section describes the research experiment
for carried out to establish performance Backpropagation
training algorithms in predicting quality of software
components based on the proposed interface metrics
BICM and ISC.

Research Experiment: The research experiment involved
training and testing of the MLP. The objective of the
experiment is establishing the performance of the various
Backpropagation training algorithms vs. the architecture
of the MLP. The performance of the network will be
evaluated in terms of rate of convergence (iterations

Table 1: Network input data set

before convergence) and network Root Mean Square
Error (RMSE). The two network performance parameters
will be analyzed against varying architecture of the MLP.
The variations of the MLP architecture are in terms of the
number of hidden layers in the network and the number of
neurons per hidden layer. The specific research questions
that we seek to answer are:

What is the relationship between variation of the
MLP network and the performance of the individual
Backpropagation training algorithms?
Is there a significant difference between the
performances of various Backpropagation training
algorithms as the architecture of the MLP network
varies?
Which Backpropagation training algorithm is most
suitable for using interface complexity metrics to
predict quality characteristics component based
systems?

Acquisition of Training Data Set: The primary data for
input into the network is obtained from Mwalili [10],
which is a set of computed interface complexity metrics
(ISC, BICM, SCCR and SCCP) for sample JavaBeans

SNO COMPONENT Maintainability Indepedence Portability
1 Gmail 0.75 0.25 0.5
2 Gcalender 0.75 0.75 0.5
3 Gdata 0.5 0.25 0.75
4 Gdocuments 0.5 0.5 0.75
5 Gcontacts 0.75 0.75 0
6 Gspreadsheets 0.5 0.25 0.5
7 Gstorage 0.75 0.75 1
8 Paapi 1 1 0.5
9 Amazonrequest 0.75 0.75 0.75
10 S3 0.75 0.75 1
11 Sqs 0.75 0.5 0.75
12 Ec2 0 0 1
13 Simpledb 1 0.75 0.75
14 Blob 0.5 0.5 1
15 Table 1 0.75 0.75
16 Queue 0.75 0.75 1
17 Azurerequest 1 0.75 0.75
18 Sapclient 1 1 0.75
19 Ftp 1 1 1
20 Rss 0.5 0.5 1
21 Smtp 1 1 0.75
22 Soap 0.75 1 0.5
23 Mime 1 0.5 1
24 Pop 1 0.75 0.5
25 Syslog 0 0 1
26 Telnet 1 0.75 1
27 Whois 1 0.75 1
28 Webupload 0.75 0.75 0.75
29 Webdav 0.75 0.75 1
30 Xmpp 0.25 0.25 1
31 atePicker 1 0.75 0.75
32 PVTree 0.75 0.5 0.75
33 PVTable 0.75 0.75 0.5
34 PVCalculator 1 1 1
35 PVCalendar 0.25 0.25 0.75
36 PVChoice 1 1 0.75

Am-Euras. J. Sci. Res., 11 (4): 240-249, 2016

244

Table 2: Components quality characteristics evaluation criteria
Metric Evaluation Criteria
ISC This metric indicates the consistency of the components interface parameter types. A high value could imply a comportment that is difficult

to integrate and maintain
BICM This metric indicates the complexity of the components interface. A high value could imply a component that is difficult to maintain
SCCR This metric indicates the self-completeness of the information dealt by the component. A low value could imply a high degree of

component independence from the exterior.
SCCP This metric shows the degree of component’s self-completeness and independence. The higher the value is, the higher the

component portability.

Table 3: Expected network output data set.

components downloaded from the components super
store, ComponentSource.com. The values for these
metrics are presented in Table 1 [13].

The expected outputs from the network are
quantities for three software component quality
characteristics of maintainability, independence and
portability.

To acquire data for the expected output, software
developers with experience in software component
technology where randomly selected and asked to
evaluate a set of software components based on

provided fuzzy guidelines (Table 2) and their experience.
The evaluators where required to give a score of 1 to 5 for
each of the three quality attributes for all components in
the provided set. The data collected data was then
aggregated and is presented in Table 3

Data Normalization and Network Training: The input
and output datasets where normalized using the
normalization Equation (X) and separated into training
and testing sets.

(X)

The normalized dataset for training the network will
therefore have seven fields derived from four input
variables (ISC, BICM, SCCR and SCCP) and and three
expected output variables (Maintainability,
Independence and Portability).

The objective therefore is to do a comparative
analysis of the performance of the standard
backpropagation (SBP), backpropagation with momentum
(BPM), dynamic propagation (DYP) and resilient
propagation (RSP) in predicting the components quality
characteristcs Maintainability, Independence and
Portability.

The performance will be measured interms of rate of
convergence (iterations before convergence) and the
network Root Mean Square Error (RMSE). Fig 3 shows the
conceptual framework for setting up, training and testing
the MLP neural network.

Based on the above conceptual framework, we
constructed two sets of physical MLP networks. In the
first Set, all networks have one hidden layer each, while
individual networks have 1, 2, 3 … 36 neurons in the
hidden layer, giving a total of 36 physical networks in the
set.. In the second Set, all networks have two hidden
layers each, while individual networks have 1, 2, 3 … 36
neurons in the each hidden layer, giving a total of 36
physical networks in the set. All networks have 4 neurons
in the input layer which corresponds to the 4 complexity
metric values and 3 neurons in the output layer which

Am-Euras. J. Sci. Res., 11 (4): 240-249, 2016

245

Fig. 3: Conceptual framework for MLP network training

Table 4: MLP Network Architecture configuration parameters

correspond to 3 components quality attributes values.
Using neural network notation the architecture for
networks can be summarized as

4-> [1-36] ->3 (for Set 1) and
4-> [1-36] -> [1-36]->3 (for Set 2)

The aim is to establish how the various BP training
methods will behave as the network architecture varies in
terms of hidden layers and neurons per hidden layer.
Network training and testing was performed for the
various combinations of training methods, network
architecture and network training parameters such as
learning rate and momentum as per Table 4.

During the training and testing step, output data for
rate of convergence and RMSE was captured and and
tabulated in Tables A1-A4 in the appendix section. In the
next section we now give the experiment results and
discussion.

RESULT AND DISCUSSION

This contains the results and discussion of the
study.

Fig. 4: Standard Backpropagation rate of convergence
for MLP with 1 and 2 hidden layers.

Fig. 5: Standard Backpropagation RMSE for MLP with 1
and 2 hidden layers

Analysis of 1 and 2 Hidden Layers Architecture: From
the graph of Backpropagation-analysis of convergence
(Figure 4), it is clear that the MLP with 1 hidden layer is
converging faster than the one with 2 hidden layers. Also,
as the number of neuron per hidden layer increases, the
rate of convergence for network with 2 hidden layers
deteriorates, while it improves for the network with 1
hidden layer.

When we consider (Figure 5) the graph of
Backpropagation RMSE analysis it can also be noted that
the network with 1 hidden layer yields a RMSE that is

Am-Euras. J. Sci. Res., 11 (4): 240-249, 2016

246

consistently lower that with 2 hidden layers. The two
outcomes imply that a network with one hidden layer is
more efficient and suitable for performing prediction in the
problem at hand

Naturally one would have expected the network with
2 hidden layers to be more efficient and robust in
prediction. However this is not the case. The poor
performance of the MLP with 2 hidden could be attributed
to problem data over-fitting which occurs when a network
that has already memorized training examples is presented
with new data not able to generalize to new situations
leading to larger error values. Methods for preventing
over-fitting are discussed in [13, 14]. One approach for
avoiding this problem is to use a smaller network that
does not have power enough to over-fit the problem. For
the problem at hand, therefore conclude that a network
with 1 hidden layer is more suitable that with 2 hidden
layers. In subsequent analysis we will therefore focus on
analyzing performance of other training methods based Fig. 6: All BP training methods rate of convergence for
for network with 1(One) hidden layer. MLP with 1 hidden layer

Analysis for the Backpropagation Algorithms for 2
Hidden Layer Architecture: Having isolated the the MLP
architecture with two hidden layers, we now turn our
attention to the MLP with one hidden layer. The objective
now is to establish how the various BP algorithms are
going to perform in terms rate of convergence and RMSE.
The performance of the various Backpropagation training
methods is presented of Figures 6 and 7 below from the
graph of convergence analysis, it can be that:-

Resilient propagation converges faster that other
methods but it’s very unpredictable and inconsistent
method.
The other three methods give a predictable trend.
Dynamic propagation gives a convergence rate that
is on average consistently lower compared to the
other methods.

From the graph RMSE analysis, It can be noted that:
Resilient propagation yields a very high RMSE and is Fig. 7: All BP training methods RMSE for MLP with 1
very unpredictable. Its therefore out rightly a very hidden layer
poor method of predicting quality characteristics for
CBS Even thought dynamic propagation appears to lower
The other three methods give a very predictable than the other two methods; we note that that visual
downward trend for RMSE with Dynamic inspection of the plot may not give a statistically
propagation being marginally lower compared to the sound conclusion as to which method is more
other two suitable for predicting the problem at hand.

Am-Euras. J. Sci. Res., 11 (4): 240-249, 2016

247

We now must do statistical analysis to so as to
discriminate between the various methods of training. We
will use Analysis of Variance (ANOVA) and regression
analysis.

Analysis of Variance (ANOVA) for Backpropagation
Algorithms Performance: Analysis of Variance
(ANOVA) provides methods for testing the equality of
three or more population means, that is, the means of a
single variable from several populations. One-way
analysis of variance is a procedure used to test if the
means of several (say k) independent random samples are
equal or not all equal to each other. In our case, we will be
testing if the means of the rate of convergence and RMSE
derived from the various Backpropagation training
methods are equal to each other.

To test for equality of means for the rate of
convergence, we let µR represent the sample mean for***

rate of convergence and setup the hypothesis,

From Table 5 at 95% confidence interval we note that
F_Test> F_Critical so we reject the null hypothesis and
conclude that at least one of the means Convergence is
different from the others.

To test for equality of means for the RMSE, we let
µC represent the sample mean for RMSE and setup the***

hypothesis,

From Table 6 at 95% confidence interval we note that
F_Test> F_Critical so we reject the null hypothesis and
conclude that at least one of the means for RMSE is
different from the others

From the above analysis, we have determined that the
there is a significant difference between the four
Backpropagation training methods. When we consider
the rate to convergence, Table 4 reveals that Dynamic

Table 5: Analysis of variance for Backpropagation algorithms (rate of
convergence)

Table 6: Analysis of variance for Backpropagation algorithms (RMSE).

Backpropagation yields the least mean among the four
methods. Similarly, when we consider the RMSE, Table 5
also reveals that Dynamic Backpropagation yields the
least mean among the four methods.

Regression Analysis for Backpropagation
Algorithms Performance: Regression is a technique
that calculates the best line that predicts a
dependent variable from an independent variable.
The objective is to make an inference about the
relationship between the pair of variables based on
sample data. In linear regression, the relationship between
x (the independent or predictor variable) and y (the
dependent or response variable) is expressed using the
regression equation

(17)

In our case, we want to make inference about the
relationship between x (No. of hidden neurons per layer)
and y (the RMSE) for the various Backpropagation
Algorithms.

In comparing the regression lines for the various
algorithms, we will be able to establish the trend of
RMSE as the number of neurons in the hidden layer
varies.

Am-Euras. J. Sci. Res., 11 (4): 240-249, 2016

248

Fig. 8: Regression analysis for RMSE against No. of The relationship between variation of the MLP
Hidden neurons in the hidden layer network and the performance of the individual

Table 7: Regression Equations for RMSE against No of neurons in the
hidden layer.

Via linear regression analysis, we will also be able to
calculate the R-square, which gives the degree of fit, or
rather by how much does RMSE depend on the number f
neurons in the hidden layer.

Figure 8 and Table 6 present the graph of
regression analysis and the regression equations
respectively

From the graph of regression analysis, it is evident
that Dynamic Backpropagation yields a trend that is
consistently lower compared to the other training
methods.

From Table 7 we note that the R-squared value
(0.852) for Dynamic Backpropagation is higher compared
to the other methods. This implies that DYP has the
highest degree of fit and therefore Dynamic
Backpropagation is the most responsive method of
training for the varying size of network architecture.

The next section gives a summary of work done,
overall conclusion and makes recommendations for
further research work.

CONCLUSION

Predicting the quality of Component-Based Systems
(CBS) has generated a lot of research interest in the recent
past. This is because of the risks associated the process
of component selection and integration of components.

In this work have have done a review of
Backpropagation algorithms and their application in
predicting metrics for software quality. We have also
done a review the Bounded Interface Complexity Metric
(BICM) and the Interface Surface Consistency (ISC)
Metric proposed by Mwalili [12].

In the research experiment, we trained a MLP to
predict software components characteristics of
maintainability, portability and independence based on
input data for the various complexity metrics (BICM, ISC
SCCR and SCCP). The objective of the experiment was to
establish the following

Backpropagation training algorithms
Whether there is significant difference between the
performances of various Backpropagation training
algorithms as the architecture of the MLP network
varies.
The Backpropagation training algorithm that is most
suitable for using interface complexity metrics to
predict quality characteristics component based
systems.

For the various Backpropagation algorithms, we
captured output data for RMSE and number of iterations
before convergence. The data was then tabulated and
analyzed in terms of network size (no of neurons in hidden
layer). The outcome of the study revealed the following:-

Backpropagation algorithms have the potential for
predicting quality characteristics for software
components and component based systems
MLP network with one hidden layer was found to be
suited to solving the prediction problem
There is a significant difference between the four
training methods
Dynamic Backpropagation was found to be the most
efficient of the four methods.

Am-Euras. J. Sci. Res., 11 (4): 240-249, 2016

249

In this work we have analyzed the performance of the 6. Lanubile Filippo, A. Lonigro and Giuseppe Vissagio,
various Backpropagation training methods in predicting 1995. Comparing models for identifying fault-prone
the quality characteristics, using the ANN MLP software components, SEKE.
architecture. There is need to further research on 7. Kurfess Franz, J. and Lonnie R. Welch, 1996.
performance of other ANN architectures and other Categorization of programs using neural networks,
training methods. The analysis was based data derived Engineering of Computer-Based Systems, 1996.
from individual components; therefore, there is need for Proceedings, IEEE Symposium and Workshop on.
analysis of the quality target system, once the IEEE.
components have been composed to a system. 8. Thwin Mie, Mie Thet and Tong-Seng Quah, 2005.

REFERENCES prediction using object-oriented metrics, Journal of

1. Boetticher, G., K. Srinivas and D. Eichmann, 1993. A 9. Aljahdali Sultan, H. and Khalid A. Buragga, 2008.
Neural Net-Based Approach to Software Metrics, Employing four ANNs paradigms for software
Proceedings of the Fifth International Conference on reliability prediction: an Analytical Study, ICGST
Software Engineering and Knowledge Engineering, International Journal on Artificial Intelligence and
San Francisco, CA, pp: 271-274. Machine Learning, 8(2): 1-8.

2. Conn, R., 1987. The Ada Software Repository and 10. Washizaki Hironori, Hirokazu Yamamoto and
Software Reusability, Proc. of the Fifth Annual Joint Yoshiaki Fukazawa, 2003. A metrics suite for
Conference on Ada Technology and Washington measuring reusability of software components,
Ada Symposium, pp: 45-53. Software Metrics Symposium, 2003. Proceedings.

3. Esposito Anna, 2000. Approximation of continuous Ninth International. IEEE.
and discontinuous mappings by a growing neural 11. Sharma Arun and Rajesh Kumar, 2009. Design and
RBF-based algorithm, Neural Networks, 13(6): 651- analysis of metrics for component-based software
665. systems. Diss. Ph. D thesis.

4. Chauvin Yves and David E. Rumelhart, 1995. 12. Mwalili Tobias, Waweru Mwangi and Kimwele
Backpropagation: theory, architectures and Michael, 2015. Empirical Evaluation of Complexity
applications. Psychology Press. Metrics for Component Based Systems, Journal of

5. Mellit, Adel and Alessandro Massi Pavan, 2010. A Theoretical & Applied Information Technology,
24-h forecast of solar irradiance using artificial neural 73(2).
network: Application for performance prediction of a 13. Srivastava Nitish, 2014. Dropout: A simple way
grid-connected PV plant at Trieste, Italy, Solar to prevent neural networks from over fitting,
Energy, 84(5): 807-821. The Journal of Machine Learning Research,

Application of neural networks for software quality

Systems and Software, 76(2): 147-156.

15(1): 1929-1958.

