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The Elementary Arithmetic Operators of Continued Fraction
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Abstract: The finite and infinite simple continued fractions are considered. The addition, subtraction and
equality of two simple continued fractions are presented. The applications of continued fractions are also

studied.
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INTRODUCTION

The continued fractions have been studied in
mathematical (Diophantine and Pell's equations) and
physical (gear ratio) [1-4]. Our simple continued fractions
that we study are reminiscent of various other continued
fractions problems. However they are very different from
ours. One is analytic of continued fractions [3-8], which
has been discussed for the real and complex values.
Another study is the continued fractions for the integer
values [2, 4, 6].

Currently, continued fractions have many practical
uses in mathematics. Forinstance, we can express any
number, rational or irrational, as a finite or
infinitecontinued fraction expression. We can also solve
any Diophantine congruence thatis any equivalence of
the form ax = b (mod m). In other words, in most real-
world applications of mathematics, continued fractions
are rarely themost practical way to solve a given set of
problems as decimal approximations are much more

is called a continued fraction. The values «,, a,, @, and
by,b.b,,... can be either real or complex and their numbers
can be either finite or infinite.

Definition 2: A finite simple continued fraction is a
continued fraction (definition 1) in which b,= 1 for all n,
that is:

a0+
(l1+
a2+'.. |
+—
an

wherea, is positive integer for all n> 1, a, can be any
integer number. The above fraction is sometime
represented by [a,;a,,4,,...,a,] for finite simple continued
fraction and [ag;a,,a,] for infinite simple continued
fraction. In this paper we will use the symbol (S.C.F.) for
the simple continued fraction.

useful (and computers can work with decimals at a much s 1 is a finite complex valued continued
faster rate). However, some interesting observations can 24 2
still be made using continued fractions. Namely, in this 3i
paper, we will be exploring how continued fractions can fraction.
be used to add and subtract the numbers aF+b and
4 Je - We start with some definitions and theorems that . 34 1 —[3.6.7.9.17] is finite S.C.F..
We used to defined the addition and the subtraction of 6+ 1 T
two simple continued fractions. 74 1
1
. . 9+—
Definition 1: An expression of the form. 17
b . . e
ap + 0 44 1 S[4:2.33.-1] is an infinite S.C.F..
b 1
a+—F I
b, 1
ay +—=— 3+
az+-- 34
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Theorem 1: A number is rational if and only if it can be expressed as a finite S.C.F. [4].

For example

Q:2+£:2+L:2+ ! =2+ ! =2+ ! :2+; =[2;1,2,3,2].
23 23 23 7 1 1 1
= 1+— 1+E 1+—2 1+71
16 16 — 2+= 2+—1
7 7 340
2
Remark 1:

*  To expand a rational number b , (a>b>0)into S.C.F. we write

a
b 1
Z=0+—,
a a

b
and then we use the same techniques as in theorem 1 for 4.

b
* To expand a negative rational number _b (a, b,> 0) into S.C.F. we take the greatest integer number
first term of S.C.F. a
that is,
H_éﬂ =—d) where —ay < _b <-djy T 1.
a a
We write
b a4
a 0B
a/

|

b

a

H for the

and then we use the same techniques as in theorem 1 to get the remaining terms for £ . That is, if £ _ (4] d5,...,a,] then
a

b ’ ’ ’ a/
——=[-ay;a,....,a,]"

a
Example 1:

§_0+ 1 -——=—06+
Or 5, ] =10,2,3] @ >

1+ L =[6,1,1,2].
1
1+
2

Lemma 1: Any finite S.C.F. [a,; a,,...,a,] can be also represented by [a,;a,....a, — 1,1] [5].
Definition 3:

The S.C.F. [a,; a,,...,a,] can be defined by

Kn—l (a2) or
Kn (al)

_ Kyii(ag)

[ag;ay,....a,]1=ay +
Kn(al)

[ag; ay,...,a,]

where,
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Ko(ag) =1 Ko(a)=1
Ki(ag)=ag Ki(a)) =

Kz(ao):a0a1+l Kz(al)zal Clz +1

K3(a0)=a0 alaz +a0+a2 K3(a1)=a1 a2a3 +a1+a3
Ki(ag) =a;_y K;_1(ag) + K;_»(ag) Ki(a))=a; K;_j(a)) +K;_»(a))
In general

Ki(aj) = ai+(j_1) Kl-_l(aj)+Kl~_2(aj), i= 1,2,...,}’!, J = 0,1,...,]’!
K_l(aj)=0 Ko(a])zl

Lemma 2: If C, = 0 in, [c); ¢;,....¢; 1, Cjy Cpiy»..C,] fOr some j with 0 <j < n, then we can replace ¢, by ¢j , =c;,, + c;, and
delete c;, c;,, from the simple continued fraction expansion, without changing the value of S.C.F.

Lemma 3: If ¢;= ¢, 0 in [ ¢g5¢y,ees€1,€5€ 41, j105--5€,, |, TOr some j with O <j < then we can delete ¢, ¢;,, from the
simple continued fraction expansion, without changing the value of S.C.F..

Definition 4:

Let [ag;ay,...,a,], [bg;by,...,b,] be two simple continued fractions, then,

. lag; ay,....a, 1 =[by; bys....b, ] if a; = b; fori=0,1,2,...,n.

. lag;ays....a,_1,a,1=ag;ay,...,a,_1,a, —1,1].

. [ags-s@j2,a;_1,0,a,1,a 0, .a,]=ag;....a;_p,a; | +a;41,d,9,...,a,].

Theorem 2: Let [ay;a,,...,a,,] and [by;b,...,b,] be two S.C.F. with a, # 0 for all i=1,2,...m and, b, # 0 for all j = 1,2,...n
and [ay;ay,...,a,]#[by;by,...,b,] then

o Ifa, = b, leta,> b,, then
lag;ays-...a,,]1>[Dg; by D, ]
« Ifa,=b,forall i=0,1,2,...k, k< min (m, n)
let a;,, > by, with £ +1 < min (m, n)
then [ag;ay,...,a,,]1>[by:b,....b,] if kis odd
and [ay;ay,...,a,,1<[by; by,....b,] ifkis even.
o Ifag,=bforalli=0,1,2,..k k=min (m, n)
letk = m, then [ay;ay,...,a,,]1>[by;bys...0,] if kis odd

and [ag;ay,...,a,,]1<[by; by,....b,] if kis even.
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For examples

*  [3;2,2]>]2;1, 4], since a, > b,.
« [3;1,1,3]>[3;7], since a, = b, and b, > a,.
[1;2,3]1<[1;2,3,4],since a,= b, forall i =0, 1, 2 and k=m = 2 (even).
«  [1;,2,3,4]>11;2,3,4,5],since a,= b, forall i=0, 1, 2, 3 and k =m = 3 (odd).

Definition 5: Let [ay;a,,...,a,] and [by;b,,...,b,,] be two S.C.F., we define addition by

(1) If m=n then

lag;ay,....a, 1 +[by; by,e b, ] =[ o5 €t s €yl (5a)
where,

co =ag + by = Ky(ag) + Ki(by)
o =|[ aby Hzﬂ Ki(apK(by) ]l
ap+b | || Ki(ay) + Ky (h)
:H ay(byby + 1)+ by (ayas +1) u

(@ay +1)(biby +1) —cilay (biby +1) + by (ayay +1)]
=|l Ki(ap) Ky (by) + Ky (b)) Ky (a) ]|
Ky (a)Ky(by) — il Ki(ap)Ky (by) + Ki(by) Ky (a1)]
Ks(a)) K3(b)Ko(cp) —[Ky(ay)Ks(by) + KZ(bZ)K3(al)]K1(Cl)]]
[Kr(ap)K3(by) + Ky (D7) K3 (@)K 5 (¢)) — K3(a) K3 (b)) K (¢cp)

3=

HKi(a1)Ki(b1)Ki—3(Cz) —[Ki_1(a)K;(by) +Ki—l(bZ)Ki(al)]Ki—Z(Cl)u i odd
[K,;_1(a))K;(by) + K;_1 (0K (a)IK;_1(c) = Ki(a)K;(B)K; 2 (cy) |

|[[K[—l(a2)Ki(bl) + K1 (0K (a)IK; o () = K (@)K (B)K;_3 (Cz)ll ; even
Ki(a)K,;(b)K;_»(cy) —[K;_1(ay)K; (b)) + K; 1 (by)K (a)IK; 1 (c) |

fori=2, ..., n.

The last term ¢, of the resulting S.C.F. is to be expanded again as a S.C.F. if necessary and not to be treated as the
greatest integer number as the preceding terms have been treated.

(2) If m#n then

Suppose that m<n then

[0 A sevs @y 1F [BY3 Beees By s By 1005 B = LC05 €L s v0r Cogs CopaloeevsCog ] (5b)
where ¢’ ,=cforj=0,1,2,...,m,

and ¢, as we did for case m=n, while ¢, =c¢ and

Jrj—m
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K,y (a)K (0K ;_3(5) —[K,-1(a)K ;(By) + K j_(by)K,,, (a))]K ;5 (c])
| [Kn-1(@)K (b)) + K ;1 (5y)K, (@)K ;- (cf) = Ky (@)K (B)K ;5 (ch)

, j odd

Joj—m
[Kp-1(a)K ;(By) + K j_1 (b)) Ky, (a))IK ;5 (c]) = K,y (@)K ;(B)K ;_3(c3)
Kon(a)K j(B)K ;5 (ch) =[Kp1(a2)K (b)) + K ;1 (b)K (@)K ;4 (c) |

, j even

forj =m+1,m+2, ..., n.
Also, the last term of the resulting S.C.F. is to be treated as mentioned earlier.

Remark 2:

*  If the number of the S.C.F. term’s for [aa,....,a,] and [byb ,,...,b ] are n, then it is not necessary for the number of
terms of the resulting S.C.F. [ag;a,,...,a,] + [b;b1,...,D,] to be n.
 If[a,] and [by;b,,...,b,] are two S.C.F. then [a,] + [bo;by,...,0,] = [Cobo;b1s...,D,] Where ¢, is given in equation (5a).

Example 2:
Find [1;2,5] + [4:3,2].
Solution:

Let [1;2, 5] = [aga,,a,] and [4;3, 2] = [byb,,b,], we get m=n=12.
From equation (5a) we have

[1:2,5] +[4;3,2] = [ag;a,,a,] + [bo;b1,b, = [cosci,e1] s

where ¢, is the last term and

C0:a0+b0:1+4:5

ay +b 2+3 5
¢y = ay(biby + 1)+ by (ayay +1)
(@ay +1)(biby +1) —clay (bby +1) + by (aya; +1)]
~ 53-2+1)+2(5-2+1)
TG 2+1)5-2+ D) =153 2+ 1) +2(5-2+1)]
s(+201) 57T 57
() -[35+22] 77-57 20

then [1;2,5] + [4:3,2] = [5;1,2,1,5,1,2]

=[2;1,5,1,2],

Example 3:
Find [17;7] + [18;1,1,3].
Solution:

Let [17;7] = [a,; a,] and [18;1, 1, 3] = [by, b,,b,,b5], we get m= 1, n=3 and m <n.
From equation (5b) we have,
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[17;7] + [18;1,1,3] = [ag;a,] + [by;b,,b,,b;] = [COQCI’C/ZaC,ﬂ
where ¢ is the last term and

c0=cb=a0+b0=17+18=35

Ay

a +b 7+1 8

¢ =cyy = |[[K0(02)K2(b1) + K{(b2)K1(al)]K0(ci) —KL(al)Kz(bl)K—l(C:z)
' Ki(a))Ky(b))Ko(c5) —[Ko(ar) Ky (by) + K (by)K (a)]K, (1)

_|l[l~(blb2 +1)+byay]-1-a, - (bby +1)~0H

| by + D) =By + D+ byay] ¢

=|[(1~1+1)+1~71|=H2]]:0
7-2 14
& =cyy= K (a))K3(b)K(c) ~[Ko(ay)K3(By) + K5 (by) K (K (¢f)
’ [Ko(az)K3(b1)+Kz(bz)Kl(al)]Kz(Ci)—Kl(al)K3(b1)K1(C/2)
_ ay(bibybs +b; +b3) = [(bibybs + by +b3) + a; (bybs + D
[(Bybabs +by +bs) + ay (bybs + D](cicy +1) = ay(bybybs + by + by) - &)
71134+ 143) = [(1-1-3+143)+7-(1-3+1)]-0
C[A-134143)+7-(1-3+1)]=7-(1-1-3+1+3)-0
7-(1-1-3+1+3)
[(1-1-3+1+3)+7-(1-3+1)]
77 7
T+7-4 1+4
Therefore [17;7] +[18;1,1,3] =[35;0, 0, 1, 2, 2]=[35;1, 2, 2].

7
=-= 1a2729
5L ]

Example 4:
Find [4] +[1;1, 2].

Solution:

Let [4] = [a,] and [1;1, 2] = [by;b,,b,] we get m= 0, n=2, m<n.
From remark 2(ii) we have,

(4] + [1;1, 2] = [ao] + [bo,b1,b,] = [€ob),b,] where
c=a,+b,=4+1=5.

Therefore [4] + [1, 1, 2] =[5, 1, 2].
A

Corollary 1: If ¢ is a non-zero integer then ({4 4..4,,a5,...]= [cao,ﬂ,caz,—,...] which is not necessary a S.C.F..
c c

Example 5:
Find -2[1;2, 2].

Solution:
From corollary 1 we have

—2[1,2,2]= [—2(1);_—22,—2(2)] =[-2;-1,-4].
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Remark 3: Note that the multiplication of S.C.F. by a non-zero integer # 1 does not necessarily lead to S.C.F. as we have
seen in example 5.

Definition 6: Let [ay;a,,...,a,] be a S.C.F., then we can define additive inverses by —ag; ay»....a,]1=[b:1,]
where,

b6=—l—a0=d0

b = Kn(al)
" K,(a)-K, [(a) (tobetreatedasS.CF.)

=[d1;d2,...,d1]

therefore,

—Tag; ay,-..,a,1=[by;b,1=[dy;d),ds-,d; 1.

Definition 7: If [ay;qy,...,a,,] and [by;b;,....b,] are two S.C.F. then we define Subtraction [ay;ay,...,a,,]-[by:by.....b,] by
the addition, [ay;ay,...,a,,]+[dy;d;,....d;] where [d;d,....,d;] given by definition 6.

That is;
*  Ifm=lthen
lag;ay,....a,]+[dg;d,,....d,, 1 =[cosctsesCpy] (7a)

where ¢,,cy,...,c,, as given in equation5Sa.

o Ifm#l, [<m then

[0 Aseees Qg Qg seees g ) F (A3 A yeees i 1 = (€03 5o Cly Cligseens Cog ] (7b)
where ¢,d,...,c;, as given in equation 5b.

The motivations of our definitions and the analytic prove are published in [5].
Example 6:

Find [1;2,2,3,5,3,1,2,4,91+[1;1,8,4,2,1,3,5,3,2,2] and —[1;1,8,4,2,1,3,5,3,2,2].
Solution:

. To find [1;2,2,3,5,3,1,2,4,9]+[1;1,8,4,2,1,3,5,3,2,2] .

Let [1;2,2,3,5,3,1,2,4,9] =[ay; a,a,,a3,a4,a5,a6,a7,a5,a9], m=9

and [1;1,8,4,2,1,3,5,3,2,2] =[by; b1,09,b3,b4,b5,b6,b7,b5,b9,b19], n=10, n=m.
From equation (5b) we have

lag; a,an,as,a4,as,a4,a7,ag,a9]+[by; b1,b2,b3,b4,b5,b6,b7,b5 .09, by ]
/
= [Co;01,02,03,04,05,06,07,68,C(),Clo]
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where ¢’ is the last term and

cg=co=apg+by=1+1=2

q=d= 7albl =|lg]|=0
ap+b 3

K1(ap)Ko (by) + K1 () Kp (a1) ]l
Ko (a))Ko(by) - c1[K1(a2)K2 (b)) + K1(b2) K2 (a1)]
_ 2(9)+8(5)H_Hi8ﬂ
oo |

==

45
K3(a1)K3(b)Ko(c2) —[K2(a)K3(h) + K2 (b2)K3(a1)]K] (Ll)]l
[K2(ap)K3(b1) + K2 (b2)K3(ap)IK 2 (c1) — K3(a))K3(b1)K1(c2)

- K3(a) K3(hy) ]l
K> (ap)K3(by) + K2 (b2)K3(a1) — K3(a) K3 (b)) K1 (c2)

_ 17(37) H:HQHZB
B3)HAN+(MNBH-ATDGBD| [ 191
[K3(a2)K4(by) + K3(bp)K4(a))IKo (c1) = K4 (aDK4 (0K ()
K4(ap)Kq(b)K2(c2) —[K3(ap)K4(by) + K3(b2)K4(a)]K3(c1)
_[IB7N®3) + (4D (901 - (83)(90)(1)ﬂ _ H@ﬂ -3
(83)(90)(4) —[9731](3) 687

Ks(a)Ks(b)Ko(c2) —[K4(a2)K5(b) + K4(b2)K5(a))]1K3(cp)
[K4(a2)K5(b)) + K4(b2)Ks5(a))K 4(c)) - K5(ap) K5 (b)) K3(c2)
_ (287)(120)(4)—[(118)(120)+(107)(287)](3)]H[@ﬂ: 3

(44869)(100) — [34440](13) 970
[K5(a2)Kg (b)) + K5(bp)Ke(a1)IK4(c1) — Kg(a1)Ke (b)) K3(c2)
Kg(a)Ke (b1)K4(c2) —[Ks5(ap)Ke(by) + K5(b)K6 (a1)1K5(cp)
_[1377)(395) + (443)(155)1(10) - (377)(443)(13)]|

(167011)(43) —[217580](33)

:H@ﬂ:3

1333

K7(a))K7(b))K4(c2) —[K6(a2)K7 (b)) + K6(b2)K7 (a1 )]K5(61)H
[Kg(ap)K7 (b)) + Ke(bp)K7(a1)IK 6 (c1) — K7 (a1)K7 (b)K5(c2)

[ 1041)2335)(43) — [(1041)(2082) + (2335)(428)](33)
- (3166742)(109) — [2430735](142)

Jp]y
10508
[K7(a2)Kg (b)) + K7(b2)Kg(ap)]Ke(c1) — Kg(a))Kg(b))K5 (cz)ﬂ
Kg(a1)Kg(b1)Kg(c) —[K7(ap)K7(by) + K7(b)Kg(a)IK7(c1)
_ @541 (6641) + (7448)(1857)(109) — (4541)(7448)(142)
- (33821368)(6106) —[66331717](142) I|
[ 4227522897
_H 197094169194ﬂ -
Ko (a))Ko(b1)Ke(c2) —[Kg(ap)Kg(by) + Kg(bp)Kg(a))IK7 (q)ﬂ
[K7(ap)Kg(by) + Kg(bp)Kg(a1)IKg(c) — Kg(a)Kg(b)K7(c2)
[ (41910)(17231)(185) - [(41410)(15364) + (17231)(17231)](142)
- (940812601)(109) —[722151210](142) ﬂ

cqp=cy=

c5=c5=

g=c§ =

g =ch=

2584508
B 3101709“‘
o = [K8(a2)K10 () + Ko(b2) K9 (a)IK (f) ~ Ko (a) K10 (b)K7 (<)
Ko (ap)K10(b1)Kg(c2) —[Kg(a2)K1 (b)) + K9 (b2)Kg (a)]K9(cl)
_[(41910)(37369) + (41910)(1723 1)](109) — (41910)% (142)
N (1756448100)(185) — [2288286000](142)
7543800
" 6286500

6 .
—g—[1,5]

258



Am-Euras. J. Sci. Res., 10 (5): 251-263, 2015

therefore,
[17 29 27 3’ 59 37 ]‘9 27 4’ 9] + [1;18’ 49 25 ]‘7 3’ 57 3’ 29 2] = [2;05 1’ 3’ 37
=[3;3,3,3,3,1,0,0,1,5]=[3;3,3,3,3, 1, 1,

37 39 17 0’ 05 17 5]
5]
To check, we have

59141 79279

[1;2,2,3,5,3,1,2,4,9] +[1;18,4,2,1,3,5,3,22]=———+
41910 41910
138420 4614
41910 1397
and
[3:3,3,3,3, 1, 1,5]=3+M
K7 (ay)
+ 423 4614
1397 1397

which is true.

* Tofind 1;1,8,4,2,1,3,5,3,2,2].

Let [1;18,4, 2,1, 3,5, 3, 2, 2] = [ay;ay,a,,a3,a4,05,0¢,07,05, 49,41 ] , We get: n= 10,
From definition 6 we have

-1;1,8,4,2,1,3,5,3,2,21 = [By; b0,

where,

by=-l-ay=-1-1=-2
b= KIO(aI)
10 =
Kio(@) =Ko (a)
Since [1;1,8,4,2,1,3,5,3,2,2] = 2P _ ay +M’ (by definition 3)
41910 Klo(al)
and K,\(a,) =41910,

Ko(ay) =79279 - agKjo(a))
=79279 -1(41910) = 79279 - 41910 = 37369

Therefore,
, Kio(a) _ 41910
Po = Kio(a) —Kg(ay)  41910-37369
41910
4541

=[94.2,1,3,5,3,2,2].
Therefore -{1;1,8,4,2,1,3,5,3,2,2] = [-2;9,4,2, 1,3, 5,3,2,2].

Theorem 3: Let f = f, be an irrational number and define the sequence aya,,a,,... recursively by
1 for k=0, 1, 2, ... .Then B is the value of infinite S.C.F. [ag;a,,a,].
3 Z[[ﬂk]]aﬁkﬂ =

Be —a
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Forexample /g —[4:a;,a5,a5,a4,a5,...1=[2:2,4,2,4..] = [2;2,4] -
We can use the same operations of finite S.C.F. for infinite S.C.F..
Example 7:
Find [ 1;2]+[1;1,2]
Solution:
Let [1,2]1=[1;2,2,2,2,..] = [ag; a},a.a3,a4,...]
and [1;1,2] =[1;1,2,1,2,...] = [by: by, by, b3.by ... ].
From equation (5a) we have [ay;ay,a,,a3,a4,...1+[by; by, b5,b3,by,...] =[cy; €1,€2,€3,C45.-]
where,
co=agtbhy=1+1=2

.= ay(biby +1) + by (@ay +1) ]‘
(@ay +1)(biby +1) —cilay (bby +1) + by (ayay +1)]

_ 2(3)+2(5)H
©)6))

- Eﬂ .
15
_ K3(a) K3(h) u
Ky (ay)K3(b) + Ky (by)K3(a)) — K3(a))K3(01)K (c2)
_ 12(4)
5(4)+3(12) - 12(4)ﬂ

= ﬁu:6

8

_ (| [K3(a) K4 (0) + K3(Dp) Ky (a1Ko (¢)) — Ky (a) Ky (01)K(c2) H
Ky(a))K4(b) Ky (c7) —[K3(a)Ky4(by) + K3(Dy)K4(ap)]K5(cp)

_[ra2an +@®)291- (29)(11)(1)“

(29)(11)(7) - [3641(6)
- EH ~0
1 49
ce | Ks(@) Ks(b)K5(cr) —[Ky(ay)Ks(by) + K4(b2)K5(a1)]K3(Cl)H
* L IKa(@)Ks () + Ky(ba)Ks(a)IK 4(c1) = Ks(a) Ks (b)K3(c2)
_[ GO)XA5)(T) - [(29)(15) + (11)(T0)](6)
(1205)(1) —[1050](1)
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_ || [&s(ap)Ke(by) + Ks(by) K (@)K 4 (1) = K (@)K (bl)K3(02)ll
| K6(@) Ko (b)) Ky(cy) —[Ks(a)Ke (b)) + Ks(by)Ke(a)]K5(cp)
_[L70)(41) + (30)(169)1(1) — (169)(4D)(1)
(6929)(7) —[7940](6)

_[romn] _,
| 863

o = K7(a))K7(b)Ky(cp) —[Ke(ay)K7 (b)) + K (b)) K7 (a))1Ks (Cl)u
[Ke(a2)K7 (b)) + Ko (by)K7(a))]Ke(c;) — K7(a)) K7(by) Ks(cr)
_ [ (408)(S56)(7) —[(169)(56) + (41)(408)](6)ﬂ
(26192)(7) —[22848](8)
2784

_ ,%H 4
_ [ [K7(ax)Kg(by) + K7 (by)Kg(a)K 6 (c1) — Kg(ay) Kg(b) Ks () ]]

Kg(ay)Kg(b)Kg(cy) —[K7(az)K7(by) + K7(by)Kg(ay)K 7(cy)
| [(408)(153) + (112)(985)1(7) — (985)(153)(8)“

(150705)(39) — [172744](34)

) 3568]] »

4199

'.Fherefore [1:2]+[1,2] =[2:0,1,6,0,0,1,4,0,...]=[3:6,0,0,1,4,0, ..]=[3:6,1,4,0, ..]
Example 8:

Find [1;2]+[2;1,1,1,4]

Solution:

Let [L2]=[ap;a] and [ 21,1,1,4]=[2;1,1,1,4,1,1,1,4,... 1= [0:61,52.03.,4....]

From (5b) we have [ag;a;]+[by; b1,52,03,b4,...] =[5 €15 23505 ] Where
C0=C6=a0+b0=1+2=3

s [22]-o

q

o= Ky (by) + K (0)g :|[2+2H:1

2 aK»(by) 4

&= aK;(b)ch ll
[K3(b) + Ky (by)a)]— ay K5(b))ch

sl {1
13+22)-203)] 1]

v | K@)+ KByl -aiK yb)é ]‘

~

a K 4(b)K5(ch) —[Ky4(by) + K5(by)ay 1K 5(cy)

_ [(14)+(9)(2)]—(2)(14>ﬂ
(2)(14)(7) - [32](6)

_ iﬂzl
4
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o)
w
Il

, a1K5(b1)K2(c§)—[K5(b1)+K4(b2)a1]K3(c{)ﬂ
[Ks(by) + K4(by)ay 1K 4(c]) — a1 K 5(b) K5 (c5)
_| @A™ -1a7D+(1 1)(2)](6)H
BNT)-BH®)
_ iﬂ _y
1

.|| [Ke(By) + Ks(by)ay 1K 4(c)) — 1 Kg (bl)K3(C§)u
| 1K (b)K4(c5) —[Kg(by) + Ks5(by)a 1K5(cy)

_[|[BD+C0O2)](7) - (2)B1(®)
(62)(39) - (71)(34)

1]] —o

4

‘= alff7(b1>1<4<c§>-—[1<7<b1>+-1<6(b2)cn]1<5(c{>ﬂ

7K () + K (by)ay 1K 6 (cf) — ay K (B)K's (ch)

@X%X”%{M&+GMDKMW
(110)(7) - (96)(8)

Q
=N
Il

- iﬂzz
2

Therefore [1;2] + [2;1,1,1,4] =13;0,1,6,1,4,0,2,...]1=[4:6, 1,6, ...].

There are many applications of continued fractions: combine continued fractions with the concepts of golden ratio
and Fibonacci numbers, Pell equation and calculation of fundamental units in quadratic fields, reduction of quadratic
forms and calculation of class numbers of imaginary quadratic field. There is a pleasant connection between Chebyshev
polynomials, the Pell equation and continued fractions, the latter two being understood to take place in real quadratic
function fields rather than the classical case of real quadratic number fields [1, 5].

The very nice elementary application of simple continued fractions is Gosper's batting average problem which is,
if a baseball player's (3-digit rounded) batting average is 0.334, what's the smallest number of at-bats that player could
have? (Batting average is computed as number of hits, . The solution proceeds by noting that a rounded average of

at — bats
0.334 corresponds to an actual number in the range (3335,3345), finding the continued fractions for these values yields
667 and 669 . This implies that the 'simplest' number within the range

0.3335 = ——=[0;2,1,666] 0.3345 = == [0;2,1,94,1,1,3]
2000 2000

5 10.2.1.05]= 22 0334495 L7}
287
This paper is the first part for the operations of the simple continued fractions. The second part will define the
multiplication, multiplicative inverse and the powers of the simple continued fractions.

CONCLUSION are much more useful (and computers can work with

decimals at a much faster rate). However, some interesting

We can also solve any Diophantine congruence that observations can still be made using continued

is any equivalence of the form ax = b(mod m). In other fractions.Namely, in this paper, we will be exploring how
words, in most real-world applications of mathematics, continued fractions can be used to add and subtract the
continued fractions are rarely the most practical way to numbers ;-7 .04 Y5z-
solve a given set of problems as decimal approximations b
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