Phosphorus Fractions of Selected Calcareous Coils of Qazvin Province and their Relationships with Soil Characteristics

¹M. Mostashari, ¹M. Muazardalan, ²N. Karimian, ¹H.M. Hosseini and ³H. Rezai

¹University College of Agriculture and Natural Resources, Tehran University, Tehran, Iran ²College of Agriculture, Shiraz University, Shiraz, Iran ³Soil and Water Research Institute, Tehran, Iran

Abstract: Informations of phosphorus fractions are important for evaluation of their status in soil and understanding of soil chemistry that influence soil fertility. To obtain such information, amount and distribution of P in different fractions of 20 soil samples of Qazvin province, Iran were determined by sequential extraction methods and their relationships with each other and with soil characteristics were investigated. Total P of different soils ranged from 700 to 1040 mg kg⁻¹. The clay contents of different samples ranged from 18-52%, CEC from 14.5-33.5 cmol kg⁻¹ and the active CaCO₃ from 2.9-19.4%. The amount of different P forms i.e. dicalcium phosphates (Ca₂-P), octacalcium phosphates (Ca₂-P), Al-phosphates (Al-P), Fe-phosphates (Fe-P), occluded-P (O-P) and P as apatite (Ca₁₀-P) were determined and found to be ranged from; 1.6-42.3, 72-314, 14.5-54.8, 8.4-34.8, 5.9-33.4 and 262-697 mg kg⁻¹ respectively. Simple correlation coefficients showed that Olsen-P had a significant correlation with soluble-P, Ca₂-P, Fe-P and O-P.A significant correlation was also observed between the P forms themselves, which is presumably a reflection of the existence of a dynamic relation between the chemical forms of an element in soil. Clay with Fe-P and O-P; total P with Ca₈-P, Al-P and Ca₁₀-P; CEC with Al-P and O-P have positive significant correlation. Electrical Conductivity (EC) with Ca₈-P and Al-P; Organic Carbon (OC) with Ca₁₀-P and active CaCO₃ with Ca₁₀-P have negative significant correlation.

Key words: Calcareous soils · Qazvin province soils · P forms and Sequential extraction

INTRODUCTION

Chemical fractionations of soil inorganic phosphorus provides a method for identifying the predominate individual forms of inorganic P in soils, most commonly soluble P, Al-P, Fe-P, occluded P and Ca-P [1]. Fractionation of inorganic P is commonly carried out to characterize the effects of soil types and P sources on the fate and potential availability and mobility of P in soils [2-5].

Inorganic phosphorus fractionations have been widely used to interpret native inorganic P status and the applied P to soils [6-10]. Jiang and Gu [11] suggested their fractionation sequence based on the ability of NaHCO₃, NH₄.F, NaOH-Na₂CO₃ and H₂SO₄ to extract CaHPO₄.2H₂O, Ca₈H₂ (PO₄)₆, AlPO₄.nH₂O, FePO₄. 2H₂O and Ca₁₀(PO₄)₆F₂, respectively.

Solis and Torrent [6] found that occluded P (O-P), extracted with Citrate Dithionate Bicarbonate (CBD), was related to CBD-extractable Fe and concluded that O-P was associated with the crystal lattice of Fe-P minerals. Many

studies performed on calcareous soils have shown that P behavior is controlled mainly by the presence of small amounts of iron or aluminum oxides. For example, Ryan *et al.* [12] showed that P sorption in 20 Lebanese calcareous soils was related to oxalate-extractable Fe, i.e. amorphous forms of iron oxides.

Samadi and Gilkes [8] demonstrated that Al-P and Fe-P were amongst the most important forms of P in virgin and fertilized calcareous soils from Western Australia. Samavati and Hossinpur [13] showed that available P (P-extracted by Olsen method) was significantly correlated with Ca₂-P, Ca₈-P, Al-P, calcium phosphate (Ca₂-P+ Ca₈-P+ Ca₁₀-P) and aluminum iron oxides (Al-Fe-P). This result indicates that these fractions probably can be used by plant.

The wide use of various inorganic P fractionation techniques demonstrate need to further clarify various P forms. Therefore the objectives of this study were to evaluate; (i) the status of inorganic P fractions and (ii) the relationship between inorganic P fractionation and selected soil properties in some highly calcareous soils.

MATERIALS AND METHODS

Twenty surface soil samples (0-30 cm) with a wide range of physical and chemical characteristics from Qazvin province in Iran were selected. The soil samples were air-dried and passed through a 2-mm sieve before analysis. Sand, silt and clay contents were separated by hydrometer method, pH in a saturated paste, Electrical Conductivity (EC), organic matter content, Calcium Carbonate Equivalent (CCE), Active Calcium Carbonate Equivalent (ACCE) and Cation Exchange Capacity (CEC) were determined according to the standard methods, Sparks [14] and the results were summarized in Table 1.

Inorganic phosphorus sequential fractionation scheme was preformed according to the methods described by Jiang and Gu [11]. Details of this sequence are presented in Table 2. Olsen-P fraction extracted by

NaHCO₃[14] was regarded as P-availability index. Soluble-P in water [15] and total-P by perchloric acid (HClO₄) digestion were also determined according the standard methods mentioned by Sparks [14].

Pearson correlation coefficients, stepwise multiple regression analysis and curve estimation procedures of SPSS software were used to determine relationships between inorganic P fractions and soil properties.

RESULTS AND DISCUSSION

The results in Table 3 show that the amounts of soluble P (Ps), available P (Pa) and total P (P_t), range from; 0.47-12.8, 2.92-42.3 and 700 to1040 mg kg⁻¹ respectively. The amount of Ca₂-P, Ca₈-P, Al-P, Fe-P, O-P and Ca₁₀-P range from; 1.6 to 42.3, 72 to 314, 14.5 to 54.8, 8.4 to 34.8, 5.9 to 33.4 and 262 to 697 mg kg⁻¹ soil respectively and

Table 1: Some physicochemical properties of soil samples from Qazvin province, Iran

	Particle	Particle size distribution (%)											
				-		EC	CEC		OC	SP	ACCE	TNV	
Soil No.	Sand	Clay	Silt	Texture	pН	(dS/m)	(cmol g ⁻¹)	SAR	(%)	(%)	(%)	(%)	
1	23	39	38	CL*	7.68	1.61	33.5	2.37	0.85	58	3.04	5.02	
2	44	34	22	L	7.82	1.06	22.6	2.56	0.28	32	3.42	5.02	
3	22	44	34	CL	7.99	1.16	31.0	7.03	0.67	48	6.36	12.30	
4	22	45	33	CL	7.62	1.11	32.1	2.28	0.92	45	4.08	7.47	
5	13	57	30	SCL	7.92	2.36	22.1	4.57	0.98	46	7.98	17.07	
6	7	59	34	SCL	7.77	8.33	18.0	12.4	0.82	40	9.88	22.46	
7	11	52	37	SCL	7.97	2.82	23.6	9.25	1.14	47	10.07	22.33	
8	12	58	30	SCL	8.10	1.05	22.2	6.18	0.83	32	19.43	35.11	
9	28	47	25	L	7.98	1.05	15.8	2.68	1.05	39	11.02	24.22	
10	21	38	41	C	8.00	1.76	22.5	5.28	1.01	34	14.3	21.97	
11	19	49	32	SCL	7.91	1.65	21.7	5.56	1.08	41	8.41	16.63	
12	16	56	28	SCL	7.67	2.01	28.8	2.74	1.20	47	15.11	11.88	
13	36	44	20	L	7.28	5.34	20.7	1.76	0.70	33	2.90	9.55	
14	30	52	18	SL	7.68	2.21	14.5	1.75	1.15	36	15.35	29.06	
15	20	48	32	SCL	7.78	4.78	15.5	4.82	1.04	44	12.68	26.18	
16	11	53	36	SCL	7.89	2.34	22.8	5.50	1.19	45	8.74	20.63	
17	38	36	26	L	7.90	0.77	31.3	2.10	0.55	31	3.20	7.63	
18	2	46	52	SC	8.10	1.22	28.8	4.99	0.75	37	13.92	20.11	
19	7	48	45	SC	7.88	3.14	22.0	5.18	0.97	50	12.64	20.68	
20	14	52	34	SCL	8.07	2.78	16.0	7.89	1.30	43	9.41	23.88	

C= Clay, L= loam and S= sand

Table 2: Details of P-fractionations scheme used

P-forms	pН	Extractions	Step
Di-calcium phosphate (Ca ₂ -P)	7.5	0.25 M NaHCO ₃	1
Octa-calcium phosphate (Ca ₈ -P)	4.2	NH ₄ -AC 0. 5 M	2
P-adsorbed by Al oxides (Al-P)	8.2	0. 5 M NH ₄ F	3
P-adsorbed by Fe oxides (Fe-P)	=	$0.1 \text{ N NaOH-}0.1 \text{ N Na}_2\text{CO}_3$	4
Occluded-P (O-P)	-	$0.3M$ Na $_3$ Cit-Na $_2$ S $_2$ O $_4$ NaOH	5
Apatite (Ca ₁₀ -P)	-	$0.5 \mathrm{NH}_2\mathrm{SO}_4$	6

Table 3: Phosphorus fractionations of soil samples from Qazvin province, Iran

	Phosphor	Phosphorus fractionations (mg kg ⁻¹)										
Soil No.	P_s	Pa	P_{t}	Ca₂-P	Ca ₈ -P	Al-P	Fe-P	O-P	Ca ₁₀ -P			
1	2.49	5.28	970	6.20	187	40.7	22.5	22.0	597			
2	1.06	4.16	1033	14.20	171	38.7	16.3	15.5	569			
3	3.85	11.66	1040	12.30	210	47.1	26.0	23.0	499			
4	2.05	5.20	950	4.70	215	54.8	28.4	31.2	336			
5	2.72	10.70	870	120.00	209	40.5	34.8	31.3	262			
6	1.00	5.14	708	5.50	111	18.5	20.4	18.6	344			
7	0.91	6.20	718	8.10	72	22.0	14.8	13.2	328			
8	0.47	5.11	790	5.20	185	27.9	16.1	15.2	293			
9	1.51	7.90	838	7.10	231	47.8	17.8	15.1	322			
10	1.43	10.72	1028	9.60	314	38.6	28.2	25.6	284			
11	2.14	5.50	7778	6.50	205	28.9	26.9	23.1	278			
12	3.23	15.46	840	14.40	249	45.0	28.7	24.9	308			
13	0.65	2.92	900	1.60	113	14.5	13.7	11.2	517			
14	0.65	6.46	720	5.30	153	17.6	8.4	5.9	315			
15	0.49	4.24	723	3.00	149	21.1	15.7	12.8	319			
16	1.55	3.54	730	3.00	96	16.5	15.2	16.0	370			
17	3.35	8.84	1018	9.20	212	34.2	15.3	14.2	697			
18	2.27	6.68	700	6.30	118	35.2	27.8	25.4	311			
19	12.80	42.23	855	42.30	171	45.7	34.1	33.4	330			
20	0.78	7.18	703	6.80	103	18.4	15.3	12.6	359			

 $P_t = total\text{-P}, \, P_a = available\text{-P}$ and P_s = solution-P

Table 4: Soil classification of soil samples from Qazvin province, Iran

Soil No.	Classification
1	Typic xerofluvents
2	Typic xerofluvents
3	Typic calcixerepts
4	Typic calcixerepts
5	Typic calcixerepts
6	Typic haplocambids
7	Typic haplocambids
8	Typic calcixerepts
9	Typic calcixerepts
10	Typic calcixerepts
11	Typic calcixerepts
12	Typic haplocambids
13	Typic xerofluvents
14	Typic calcixerepts
15	Typic calcixerepts
16	Typic calcixerepts
17	Typic haplocambids
18	Typic xerofluvents
19	Typic calcixerepts
20	Typic calcixerepts

constitute 1.44, 27.21, 5.12, 3.34, 3.05 and 59.76% of the sum of all fractions respectively

Similar results have been observed in calcareous soils by Williams *et al.* [16], Solis and Torrent [6] and Samadi and Gilkes [8].

Sodium hydroxide can dissolve FePO₄-2H₂O [1], but the ability of NaOH to extract Fe-P in the presence of CaCO₃ has been questioned [16]. Ruiz *et al.* [17] and Delgado *et al.* [18] believed that use of citrate ascorbate should increase the P release as a result of its reductant effect and will not affect Ca-P. Sulfuric acid is known to extract lithogenic Ca-P [17]. This fraction is regarded as stable P soil compounds [7, 11, 17, 19]. The 20 soils used in this study were classified and the classification is presented in Table 4.

The results of correlation study show a significant negative correlation between silt% and Ca₁₀-P and total P, OC% and Ca₁₀-P and total P, active CaCO₃ and Ca₁₀-P, EC and Ca₈-P and Al-P and a significant positive correlation between CEC and Al-P, O-P, total P, clay% and Fe-P and O-P as demonstrated in (Table 5).

Olsen-P approximates the available P which uptake by plants grown in calcareous soils [18]. Samavati and

Table 5: Simple correlation coefficients (R) between inorganic P-fractionations and soil properties of soil samples from Qazvin province, Iran

	P-fractionations										
Soil parameters	P_s	Pa	P_t	Ca ₁₀ -P	O-P	Fe-P	Al-P	Ca ₈ -P	С а 2-Р		
Clay	0.39	0.36	0.19-	0.32-	**0.59	**0.57	0.20	0.10-	0.30		
Silt	0.07-	0.04	**0.75-	**0.68-	0.01-	0.04	0.34-	0.34-	0.06-		
OC	0.03-	0.11	**0.61-	**0.69-	0.02-	0.02	0.23-	0.09-	0.07		
ACCE	0.02	0.23	*0.53-	**0.73-	0.03-	0.04	-0.13	0.09	0.12		
CEC	0.21	0.05	*0.54	0.38	*0.51	0.44	**0.57	0.30	0.08		
EC	0.08-	0.03-	0.42	0.13-	0.19-	0.16-	**0.57-	*0.48-	0.09-		

 P_t = total-P, P_a = available-P and P_s = solution-P, R^{**} and R^{*} significant at $P \le 0.01$ and $P \le 0.05$ respectively, Statistical analysis showed that available-P (P extracted by Olsen method) was significantly correlated with Ca_2 -P, Fe-P, O-P, this result indicate that these fractions probably can be used by plant (Table 6)

Table 6: Simple correlation coefficients (R) between phosphorus fractionations

P forms	P_s	Pa	P_{t}	Ca ₁₀ -P	O-P	Fe-P	Al-P	Ca ₈ -P	Ca ₂ -P
Ca ₂ -P	**0.93	**0.96	0.22	0.03-	*0.54	*0.54	*0.46	0.2	1
Ca ₈ -P	0.17	0.22	**0.66	0.04-	*0.46	*0.50	**0.71	1	
Al-P	*0.47	0.42	**0.62	0.05	**0.72	**0.69	1		
Fe-P	**0.59	*0.56	0.28	0.31-	**0.98	1			
O-P	**0.61	*0.55	0.32	0.25-	1				
Ca_{10} - P	0.03	0.14-	**0.60	1					
\mathbf{P}_{t}	0.21	0.13	1						
P_{a}	**0.95	1							
$\mathrm{P}_{\mathtt{s}}$	1								

 $P_t = total - P, P_a = available - P \ and \ P_{s=} \ solution - P, \\ R^{**} \ and \ R^* \ significant \ at \ P \leq 0.01 \ and \ P \leq 0.05 \ respectively \ and$

Table 7: Multiple regression equivalents between phosphors fractionations and soil properties

\mathbb{R}^2	Multiple regression equivalents	P forms
**0.951	CEC 0.075-OC 6.622-Pa 0.993 + 8.229	Ca ₂ -P
**0.785	OC 96.485 + ACCE 7.069 + Pav 0.739-Pt 0.586 + 472.138-	Ca ₈ -P
**0.680	EC 2.697-Silt 8.23+ Clay 0.519 + Pt 0.087+ 90.368-	Al-P
**0.742	Silt 0.705 + Clay 0.565 + Pa 0.169+ Pt 0.052 + 76.119-	Fe-P
**0.761	Silt 0.765 + pH 4.986 + Clay 0.711 + Pt 0.059 + 50.721-	O-P
**0.712	CEC 3.622-Silt 6.971-ACCE 10568-Clay 3.728-852.539	Ca_{10} - P
**0.973	69.1 Ps-13.2Fe-P-3.2Al-P-Ca ₈ -P 2.6+ OC 416.2-Silt 13.5+ACCE 28.2-EC 38.9-pH 229.7-Clay 13.3+ Pa 27.3+2187.9	\mathbf{P}_{t}
**0.992	Pt 0.009-Fe-P 0.16-Al-P 0.04-Ca ₈ -P 0.03+OC 4.8-Silt 0.17+ACCE 0.33-EC 0.49-pH 2.8-Clay 0.16+ Pa 0.37+24.116	P_s
**0.994	Ps 2.621+Pt 0.03+Fe-P 0.44+Al-P 0.11+Ca ₈ -P 0.08-OC 13.168+Silt 0.48-ACCE 0.91+EC 1.3+pH 7.7+Clay 0.46-65.971-	P_a

R** significant at P≤0.01

Hossinpur [13] reported that available P was significantly correlated with Ca₂-P, Ca₈-P, Al-P and Fe-P.

Multiple regression analysis indicates significant positive correlations were obtained between Ca₂-P and Al-P, Fe-P, O-P, available-P and solution-P as demonstrated in Table 7.

The relationships between Olsen-P values and clay, silt and Ca₈-P indicate a negative correlation whereas positive correlations with OC, Fe-P, Al-P, total P and solution P were observed.

Solis and Torrent [6] reported that the Olsen-P test extract a portion of the labile P that is negatively correlated with the content of Fe oxides, which is in turn an essential factor involved in the phosphate buffer capacity of the soils.

Adhami *et al.* [20] evaluate the relationships between P availability indices and inorganic P forms. They stated that the abundance of different P forms was in the order Ca_2 -P<Fe-P<Al-P<O-P<Ca_8-P<Ca_10-P was highly correlated with Olsen-P and exchangeable-P.

Fig. 1: Relationship between P-fractionations and P-available in soil samples

Adhami *et al.* [19] observed that CB-P was positively correlated with silt content and negatively related to citrate-bicarbonate-dithionite extractable iron.

There was a linear regression between Olsen-P (P_a) and Ca₂-P (Fig. 1). So that with increasing of Ca₂-P, Olsen-P was increased. Sui and *et al.* [21] reported that study of phosphorus fractionations can be used for estimating of Olsen-P (P_a). There was a logarithmic regression between Olsen-P and Al-P so that with increasing of Al-P, Olsen-P was increased extremely (Fig. 1).

Chang and Juo [22] showed that there was a significant correlation between Olsen-P and Al-P. There was a significant correlation between Olsen-P and Fe-P (Fig. 1).

Schmit and et al. [23] reported that Ca-P, Al-P and Fe-P were sources of Olsen-P. There was a significant

Fig. 2: Relationship between Fe-P and Al-P in soil

Fig. 3: Relationship between TNV and ACCE in soil

correlation between Al-P and Fe-P (Fig. 2). So that with increasing of Fe-P, Al-P was increased extremely. There was a highly significant correlation between TNV and active CaCO₃ (Fig. 3). Pena and Torrent [24] showed that TNV (equivalent CaCO₃) has a Low effect on Ca-P in comparison with active CaCO₃

REFERENCES

- Chang, S.C. and M.L. Jackson, 1957. Fractionation of soil phosphorus. Soil Sci., 84:133-144.
- Sharma, P.K. and S.P. Verma, 1980. Transformation of added P into inorganic P-fractions in some acid soils of Himachal Pradesh. J. Indian Soil Sci. Soc., 28: 450-453.
- McCoy, J.L., L.J. Sikora and R.R. Weil, 1986. Plant availability of phosphorus in sewage sludge compost. J. Eviron. Qual., 15: 403-409.
- Sudhir, A., T.A. Singh and V. Bhardwaj, 1987. Inorganic soil phosphorus fractions and available phosphorus as affected by long term fertilization and cropping pattern in Nainital Tarai. J. Indian Soil Sci. Soc., 35: 25-28.

- Tekaign, M. and I. Haque, 1991. Phosphorus status of some Ethiopian soils. II. Forms and distribution of inorganic phosphates and their relation to available phosphorus. Trop. Agric., Trinidad, 68: 2-8.
- Solis, P. and J. Torrent, 1989. Phosphate fractions in calcareous Vertisols and Inceptisols of Spain. Soil Sei. Soc. Am. J., 53: 462-466.
- Barbanti, A., M.C. Bergamini, F. Frascari, S. Miserocchi and G. Rosso, 1994. Critical aspects of sedimentary phosphorus chemical fractionation. J. Environ. Qual., 23: 1093-1102.
- Samadi, A. and R.J. Gilkes, 1998. Forms of phosphorus in virgin and fertilized calcareous soils of Western Australia. Aust. J. Soil Res., 36: 585-601.
- Samadi, A. and R.J. Gilkes, 1999. Phosphorus transformations and their relationships with calcareous soil properties of South Western Australia. Soil Sci. Soc. Am. J., 63: 809-815.
- Carreira, J.A., B. Vinegla and K. Lajtha, 2006.
 Secondary CaCO₃ and precipitation of Ca-P compounds control the retention of soil P in arid ecosystems. J. Arid Environ., 64: 460-473.
- 11. Jiang, B. and Y. Gu, 1989. A suggested fractionation scheme of inorganic phosphorus in calcareous soils. Fert. Res., 20: 159-165.
- Ryan, J., H.M. Hassan, M. Baasiri and H.S. Tabbara, 1985. Availability and transformation of applied phosphorus in calcareous Lebanese soils. Soil Sci. Soc. Am. J., 49: 1215-1220.
- Samavati, M. and A.R. Hossinpur, 2006. Phosphorus fractions in selected soils of Hamedan Province and their correlation with available phosphorus. Iranian J. Soil and Water Sci., 20: 234-248.
- Sparks, D.L., 1996. Methods of soil analysis. Part 3. Chemical methods. Soil Sci. Soc. Am., Madison, WI.
- Watanabe, F.S. and S.R. Olsen, 1965. Test of an ascorbic acid method for determining phosphorus in water and NaHCO₃ extracts from soil. Soil Sci. Soc. Am. J., 29: 677-678.

- Williams, J.D.H., J.K. Syers, R.F. Harris and D.E. Armstrong, 1971. Fractionation of inorganic phosphate in calcareous lake sediments. Soil Sci. Soc. Am. J., 35: 250-255.
- Ruiz, J.M., A. Delgado and J. Torrent, 1997. Ironrelated phosphorus in over fertilized European soils. J. Environ. Qual., 26: 1548-1554.
- Delgado, A.J., R. Ruiz, M.C. Campillo, S. Kassem and L. Andreu, 2000. Calcium-and iron related phosphorus in calcareous and calcareous marsh soils: Sequential Chemical Fractionation and ³¹P nuclear magnetic resonance study. Commun. Soil Sci. and Plant Analysis, 31: 2483-2499.
- Adhami, E., M. Maftoun, A. Ronaghi, N. Karimian, J. Yasrebi and M.T. Assad, 2006. Inorganic phosphorus fraction of highly calcareous soils of Iran. Commun. Soil Sci. and Plant Analysis, 37: 1877-1888.
- Adhami, E., H.R. Memarian, F. Rassaei, E. Mahdavi, M. Maftoun, A. Ronaghi and R.G. Fasaei, 2007. Relationship between phosphorus fractions and properties of highly calcareous soils. Aust. J. Soil Res., 45: 255-261.
- Sui, Y., M.L. Thompson and C. Shang, 1999.
 Fractionation of phosphorus in a Mollisol amended with biosolids. Soil Sci. Soc. Am. J., 63: 1174-1180.
- 22. Chang, S.C. and S.R. Juo, 1963. Available phosphorus in relation to forms of phosphorus in soils. Soil Sci., 95: 91-96.
- Schmidt, H.P., S.W. Buol and J. Kamprath, 1996. Soil phosphorus dynamics during seventeen years of continuous cultivation: Fractionation analysis. Soil Sci. Soc. Am. J., 60: 1168-1172.
- Pena, F. and J. Torrent, 1990. Predicting phosphate sorption in soils of Mediterranean regions. Fert. Res. 23: 173-179.