Effect of L-Carnitine Supplementation on Growth Performance and Carcass Composition of Caspian Roach (Rutilus rutilus Caspicus)

Hamideh Kordi, Mohammad Reza Imanpour and Safura Sedaghat

1Department of Fisheries, Gorgan University of Agricultural Sciences and Natural Resources, Iran
2Gorgan University of Agricultural Sciences and Natural Resources, Iran

Abstract: An experiment was conducted on Caspian roach (Rutilus rutilus caspicus) juveniles to investigate the effect of dietary L-carnitine supplementation on growth performance and carcass composition. A total of 120 fish (14.82±2.10 g) were randomly distributed on 12 aquaria (10 fish/aquarium) and fed on either control diet as well as control diet supplemented with 500, 1000 and 2000 mg L-carnitine/kg diet, over a 70-day period. Results showed there were no significant changes in weight gain, weight gain percentage, SGR, condition factor and carcass ash content (P>0.05). However, fish fed on 2000 mg L-carnitine/kg diet showed significantly higher lipid carcass content compared to the other treatments (P<0.05). Likewise, this group showed the lower protein content compared to the control group (P<0.05). Results suggested that although dietary L-carnitine had no significant effects on growth performance, which might be as a result of its endogenous sufficient synthesis, however it significantly affected carcass chemical quality.

Key words: L-Carnitine %Protein %Lipid %Fish

INTRODUCTION

L-carnitine is a non-essential nutrient which is sometimes known as an amino acid compound [1]. Amino acids lysine and methionine are the precursor of L-carnitine [2]. L-carnitine is naturally biosynthesized in the animal liver and kidney. The most important role of L-carnitine is related to its mediatory role in long chain fatty acid transferring into the mitochondria in order to oxidation [3]. Thus, L-carnitine serves as a carrier to transfer the long chain fatty acids from cytoplasm to mitochondria and without L-carnitine fatty acids' oxidation and energy production is impossible [2]. Increased fatty acid oxidation via L-carnitine mediation is accompanied with decrease in essential amino acids catabolism [2]. The advantage of dietary L-carnitine supplementation for growth performance is related to optimum dietary utilization as well as inhibition from lysine and methionine catabolism [4]. To date, the major of the studies have been conducted on fish in early life stages; because it is believed that higher growth rate at this stage needs the carnitine levels higher than its synthesis in the body [1]. It seems that some factors such as age, diet composition and species metabolic requirements affect the fish response to dietary L-carnitine supplementation [5].

Several studies on the use of L-carnitine in aquatic organism diets in order to growth increment. Santulli and Amelio [6], Torreele et al. [4], Becker and Focken [7], Chatzifotis et al. [8], Shakeri [9], Jalali Hajiabadi [10] and Ghaffari [11] found the advantages of dietary L-carnitine supplementation on Dicenterarchus labrax, Clarias gariepinus, Cyprinus carpio, Pagrus major, Oncorhynchus mykiss and Huso huso growth performance. However, Burtle [12], Rodehutscord [13], Seifabadi et al. [14], Hosseini et al. [15] found no positive effect of dietary L-carnitine supplementation on growth performance in Silurus glanis, O. mykiss, Rutilus frisii kutum and O. mykiss, respectively.

There are many studies about L-carnitine effects on other animals and human for example: the effect of L-carnitine on performance in Japanese Quail [16], on semen characteristics of chilled rabbit [17] and adipocytokines and lipid profile in obese women [18].

The present study was conducted to investigate the effect of dietary L-carnitine supplementation on growth performance and carcass composition in Caspian roach.
Table 1: Control diet composition

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fish meal</td>
<td>43.47</td>
</tr>
<tr>
<td>Meat meal</td>
<td>13</td>
</tr>
<tr>
<td>Wheat meal</td>
<td>27.53</td>
</tr>
<tr>
<td>Fish oil</td>
<td>6</td>
</tr>
<tr>
<td>Soybean oil</td>
<td>3</td>
</tr>
<tr>
<td>Lysine</td>
<td>1.5</td>
</tr>
<tr>
<td>Methionine</td>
<td>1.5</td>
</tr>
<tr>
<td>Vitamin mix</td>
<td>4</td>
</tr>
</tbody>
</table>

Chemical composition

<table>
<thead>
<tr>
<th>Moisture</th>
<th>9.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude protein</td>
<td>38.5</td>
</tr>
<tr>
<td>Crude lipid</td>
<td>14.3</td>
</tr>
<tr>
<td>Ash</td>
<td>10.5</td>
</tr>
</tbody>
</table>

MATERIALS AND METHODS

A total of 120 Caspian roach (14.82±2.10 g) were randomly distributed on 12 glass aquaria (30x40x60 cm) filled with 60 L water. Fish were fed on the control diet (Table 1), over a 10-day period as acclimation period. All aquaria were continuously aerated using air pomp. After acclimation period, the aquaria were assigned as 4 treatments (three replications per treatment) receiving the control diet or control diet supplemented with 500, 1000 and 2000 mg L-carnitine/kg diet. Fish were fed based on 5% body weight over the first month and 3% thereafter. Feeding was performed twice a day. Water temperature was monitored daily being 17.8-19.6°C. Dissolved oxygen, total hardness and pH were 5-5.5, 270±0.2 mg/l and 7.5±0.3. Water exchange was 25% every other day. The feeding trial continued over a 60-day period. Fish were biometric at the start of the experiment and 1 and 2 months thereafter and food amount was adjusted accordingly. At end of the experiment, weight gain (WG), weight gain percentage (WG%), condition factor (K) and SGR were calculated as follow:

\[\text{WG} = W_f - W_i \] \hspace{1cm} [19]

\[\text{WG} \% = 100 \times \frac{W_f - W_i}{W_i} \] \hspace{1cm} [19]

\[K = \frac{W_f}{L^3} \times 100 \] \hspace{1cm} [19]

\[SGR = 100 \times \frac{\ln W_f - \ln W_i}{T} \] \hspace{1cm} [19]

Where \(W_f \) was the final weight, \(W_i \) was initial weight, \(L \) was final total length and \(T \) was the experiment duration.

At the end of the trial, 5 fish were selected from each treatment for carcass analyses. The fish were killed after anesthesia and decapitation, the viscera were removed and the carcasses were stored at -18°C for chemical analyses. Samples' moisture (at 105°C for 24h), crude protein (Kjeldahl apparatus, Gerhardt, Königswinter, Germany. Nitrogen* 6.25), crude fat (extraction with petroleum ether by Soxhlet apparatus, Behr, Düsseldorf, Germany) and ash (incineration at 600°C for 6 h) were determined according to AOAC [20].

Data normality was tested by Shapiro-Wilk's test. Data were subjected to one-way ANOVA and significant difference between the treatments was determined by Duncan's test. Data are presented as treatment mean±SD. The values of \(P<0.05 \) were considered significantly different. All analyses were performed using statistical software SPSS v. 16.

RESULTS

There were no significant differences in WG, WG%, K and SGR (Table 2). Data of treatments' carcass chemical composition are shown in Table 3. There was no significant difference in carcass moisture and ash content between the treatments (\(P>0.05 \)). However, carcass lipid and protein showed significant difference between the treatments (\(P<0.05 \)). The highest lipid values were related to fish fed on 2000 mg L-carnitine/kg diet. There was no significant difference in lipid values between the control, 500 and 1000 mg L-carnitine/kg diet treatments (\(P>0.05 \)). In the case of carcass protein content, significant
difference was only detected between the control and 2000 mg L-carnitine/kg diet in which control diet showed significantly higher levels (P<0.05).

DISCUSSION

Increase in food efficiency is desired in any aquaculture activity. L-carnitine insufficiency will lead to essential amino acid catabolism and growth impairment. Thus L-carnitine supplementation is performed to increase growth performance.

In the present work, there was no significant difference in growth performance between the treatments suggesting L-carnitine supplementation ineffectiveness in Caspian roach. Harpaz et al. [21] suggested that L-carnitine supplementation is ineffective some species. Chatzifotis et al. [22] found no significant effect of L-carnitine supplementation (1, 2 and 4 g/kg) on growth performance in rainbow trout fingerling. Working with a similar species, *R. frisii kutum*, Seyfabadi et al. [14] found no advantage of dietary L-carnitine supplementation (400, 800 and 1200 mg/kg) on growth performance. However, there are antonym reports suggesting the benefit of L-carnitine supplementation on growth performance in fish fry or fingerlings. Shakeri [9] reported the significant increase in growth performance in rainbow trout with 24 g body weight. Likewise, Jalali Hajiabadi [10] found significant increase in growth performance in rainbow trout fen on L-carnitine-supplemented diets. Torreele et al. [4] fed African catfish with the diets supplement with 121, 230, 480, 581, 1934 and 3961 mg/kg. They found L-carnitine elevation from 121 to 581 mg/kg led to growth increase, however, growth increment decreased beyond 581 mg/kg.

L-carnitine supplementation was led to change in carcass chemical composition. Chatzifotis et al. [23] found increase in carcass lipid content as a result of dietary L-carnitine supplementation (2088 mg/kg). Jalali Hajiabadi [10] reported change in carcass lipid and protein content in rainbow trout fed on L-carnitine supplemented diets. On the other hand, Becker and Focken [7] observed no significant difference in carcass composition due to L-carnitine supplementation (200, 400 and 600 mg/kg) in common carp. Likewise, Hosseini et al. [15] and Seyfabadi et al. [14] found similar results in rainbow trout and *R. frisii kutum*.

According to the results, L-carnitine has no advantages on growth performance in Caspian roach and its application for this purpose is not advised but it significantly affected carcass chemical quality.

ACKNOWLEDGEMENTS

The authors are thankful to the Department of Fisheries, Faculty of Fisheries and Environment, Gorgan University of Agricultural Sciences and Natural Resources. We are also thankful to Mr. A. Jafar node, critic of Shahid Naser Fazli barabadi Aquaculture Research Station for helpful and constructive comments.

REFERENCES

