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Bayesian Estimation Procedures for Three-parameter Exponentiated-Weibull
Distribution under Squared-Error Loss Function and Type II Censoring

Ajit Chaturvedi and Anupam Pathak

Department of Statistics, University of Delhi-110007, India

Abstract: The three-parameter exponentiated-Weibull distribution has been widely used especially in the
modelling of life time event data. It provides a statistical model which has a wide variety of application in many
areas and the main advantage is its ability in the context of life  time  event  among  other  distributions.
Bayesian estimation procedures are considered for estimating the reliability function R(t)=P(X>t) and P=P(X>Y)
for three-parameter exponentiated-Weibull distribution under type II censoring. Considerations are given to
squared-error loss. Approach: A new technique of obtaining Bayes estimators of these parametric functions
is introduced in which major role is played by the estimators of the powers of the parameter and the functional
forms of the parametric functions to be estimated are not needed. Simulation studied is performed.

Key words: Three-parameter exponentiated-Weibull distribution  Type II Censoring  Bayes estimators 
Squared-error loss function (SELF)

INTRODUCTION indicating a bathtub hazard rate. Non-monotone hazard

Reliability theory is mainly concerned with the and engineering, in the field of medical, in the field of
determination of the probability that a system, consisting ecological and space explorations. Due to these reasons,
possibly of several components, will operate adequately modeling lifetime data for non-monotonic hazard rates
for  a  given  period  of time in its intended application. seems to be a growing interest. In this context,
The reliability function R(t) is defined as the probability of exponentiated-Weibull family can be considered as a
failure-free operation until time t. Thus, if the random suitable modal, which was initially introduced by [12], as
variable (rv) X denotes the lifetime of an item, then a simple generalization of two-parameter Weibull family
R(t)=P(X>t). Another measure of reliability under stress- and is obtained by introducing one additional shape
strength set-up is the probability P=P(X>Y), which parameter. This family allows bathtub shaped as well as
represents the reliability of an item of random strength X unimodal hazard rates. The probability density function
subject to random stress Y[1-16]. Many researchers have (pdf), cumulative distribution function (cdf) and reliability
considered the problems of estimation of R(t) and ‘P’ for function R(t) of exponentiated-Weibull family,
various lifetime distributions and for a brief review, one respectively, are
may refer to and others. Some of these models
(particularly, exponential and Weibull models) are widely
discussed in the literature for the analysis of lifetime data. (1.1)
These models accommodate either constant or monotone
type of the hazard rates. But non-monotonic hazard
functions such as unimodal shaped and bathtub shaped (1.2)
also arises in practice. For example, data in reliability
analysis specially life cycle of the product often involve and
high initial hazard rate (infant mortality) and eventual high
hazard rates due to aging and wear-out in the end (1.3)

rate is very common, for example, in the field of science
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Bayesian ideas were introduced for the first time in point. This estimator is subsequently used to obtain
reliability and life testing by [1], who considered the Bayes estimator of R(t) and ‘P’. Thus, in all the estimation
problems of estimating the parameter and reliability problems, the major role is played by the estimators of the
function of one-parameter exponential distribution under powers of the parameter. We have established an
type II censoring. Consideration was given to SELF. [11] interrelationship between various estimation problems.
considered a family of lifetime distribution and proposed Expressions for the risks, posterior risks and Bayes risks
Bayesian estimation procedures for the parameter and of various estimators are provided.
reliability function under SELF and type II censoring. For In Section 2, we give the set-up of the estimation
a brief review one may refer to the book by [10]. [6] problems and introduce  the  notations  and  definitions.
derived Bayes estimator of ‘P’ under SELF when X and Y In section 3, we obtain Bayes estimators  of  the  powers
were assumed to follow exponential distributions. [15] of ,  R(t)  and  ‘P’. In Section 4, simulation study is
discussed the classical and Bayesian methods of carried out to investigate the performance of estimators.
parameter estimation for  complete  sample  case.  [16] In Section 5, discussion is made. Finally, in Section 6
have discussed the classical and Bayesian methods of conclusion are given.
parameter estimation under type II censoring. This paper
is an attempt in the direction  of  Bayesian  estimation of Set-up of the Estimation Problems, Notations and
R(t) and ‘P’ for three-parameter exponentiated-Weibull Definitions: Let the random variable (rv) X follows the
distribution under type II censoring. three-parameter exponentiated-Weibull distribution whose

The purpose of the present paper is manifold. For the pdf is given at (1.1). Throughout we assume that  is
distribution (1.1), Bayes estimators are derived for the unknown but  and  are known. Suppose n items are put
powers (positive as well as negative) of the parameter, on a test and the test is terminated after the first r ordered
reliability function R(t) and ‘P’ under SELF. Type II observations are recorded. Let  be
censoring is considered. Deviating from the conventional
methods of obtaining Bayes estimators of R(t) and ‘P’,
Bayes estimators of the powers of the parameter are
utilized to obtain Bayes estimator of the pdf at a specified

the lifetimes of the first r ordered observations.
Obviously, (n-r) items survived until X . Denoting(r)

by , we have likelihood function as

Therefore,

(2.1)

Where,

(2.2)

Looking (2.1), we consider the natural conjugate prior distribution for  to be gamma with pdf

(2.3)
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Combining (2.1) and (2.3) via Bayes theorem, the posterior density of  comes out to

(2.4)

In order to estimate ‘P’, let n items on X and m items on Y are put through a life test and r and s being their truncation
numbers, respectively. The rv X has pdf  and rv Y has pdf  Let us denote by

and

Here, we assume that , ,  and are known but  and  are unknown. We consider the conjugate priors for1 1 2 2 1 2

 and given at (2.3) with parameters (µ , ) and (µ , ) respectively.1 2 1 1 2 2

Let us make the transformation  It is easy to see that U follows exponential distribution with pdf

If we consider the transformation  then Z ’s are independent and identically distributedi

rv’s each having exponential distribution. Moreover, since  from the additive property of exponential

distribution the pdf of S  isr

(2.5)

From (2.3) and (2.5) the marginal pdf of S  isr

or,

(2.6)

Denoting by  the Bayes estimators of  under SELF and the loss resulting from estimating 

by  respectively, the associated risk is defined by

(2.7)
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The posterior risk for estimating  by  is 

(2.8)

and Bayes risk for estimating  by  is

(2.9)

It should be noted here that the risk of Bayes estimator of  is a function of the modal parameter  and is
independent of the sample data, the posterior risk is a function of the sample data S and of the prior parameters and isr

independent of  and Bayes risk is a function of the prior parameters only. We also note the following relationships

(*)

In what follows we obtain  and it’s various measures of performance under SELF.

Bayes Estimators of the Powers of , R(t) and P Under SELF: The following theorem provides Bayes estimators of
powers of .

Theorem 1: For a positive integer p, under SELF, Bayes estimators of  and  are given, respectively, by ,-p p

where

(3.1)

and

(3.2)

Proof: From (2.4) and using the result that Bayes estimator of any function of  is it’s posterior mean, we have

and the result (3.1) follows.

Similarly, we can prove result (3.2).
In the following theorem we derive expression for the risks, posterior risks and Bayes risks of Bayes estimators of

the powers of .
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-pâBS

( ) r

2-p -p -p
S S |BS BSˆ ˆR E -α  α = α α 

( )
( ) ( ) ( )

( ) ( )
r r

2
2p p-p -2p

S | r S | r
r - p r p

E S -2 E S
r rα α

   Γ +ν Γ +ν+   = +µ α +µ +α   Γ +ν Γ +ν      

( )
( )

( )
( )

r

r

2 2p 2p
2p-i i

S | r
ii 0

p p
-p p-i i -2p

S | r
ii 0

r - p
E S

r

r p
 - 2 E S .

r

α
=

α
=

    Γ +ν   = µ    Γ +ν        
    Γ +ν+   α µ +α    Γ +ν        

∑

∑

World Eng. & Appl. Sci. J., 6 (1): 45-58, 2015

49

Theorem 2:

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

and

(3.8)

Proof: From (3.1) the risk corresponding to  is

(3.9)

Now from (2.5) for q to be positive integer, we have
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(3.10)

Hence result (3.3) follows on combining (3.9) and (3.10).
Now by definition

(3.11)

Hence result (3.4) follows from (2.4), (3.1) and (3.11).
Using definition (*), (2.6) and (3.4), we get

And hence (3.5) follows on using

The proofs of the results (3.6), (3.7) and (3.8) are similar to those of (3.3), (3.4) and (3.5), respectively.
In the following lemma we obtain Bayes estimator of the pdf (1.1) at a specified point ‘x’ with the help of Bayes

estimators of powers of .

Lemma 1: For  defined at (1.1) 

Proof: We can write (1.1) as
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Utilizing lemma 1 of [4] and (3.2), we get

which is the required result
In the following theorem, we obtain Bayes estimator of reliability function.

Theorem 3: For the reliability function given at (1.3)

Proof: We have,

(3.12)

From above, we conclude that Bayes estimator of R(t) can be obtained with the help of Bayes estimator of 
Thus from Lemma 1
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and the theorem follows.
The following theorem gives the expression for risk, posterior risk and Bayes risk of 

Theorem 4: For  obtained in Theorem 3,

(3.13)

(3.14)

and

(3.15)

Proof: By definition

(3.16)

For q to be positive integer, from (2.5),

(3.17)
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Result (3.13) follows from (3.16) and (3.17).
Again by definition

(3.18)

Using (2.4), we have
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Result (3.14) follows from (3.18), (3.19) and (3.20).
From (3.14),
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Result (3.15) follows from (3.21), (3.22) and (3.23).
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In what follows, we obtain Bayes estimator of P.

Theorem 5: For  and  =  =  say and  =  = , say,1 2 1 2

(3.24)

where , is Gauss hyper geometric series and  Moreover, for

(3.25)

Proof: For  and 

Putting , we get  From (2.6), the joint posterior density of  is

(3.26)

In (3.26), let us make the transformation  The Jacobian of transformation is w. From (3.26), the

joint pdf of P and W is thus

(3.27)

Integrating out w from (3.27), the marginal posterior pdf of ‘P’ comes out to be
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(3.28)

Denoting by , we can write (3.28) as

Result (3.24) now fallows on applying a result of [7].
From the argument similar to used in Theorem 3, for 

and result (3.24) follows.

Corollary 1: For

Proof: Corollary directly follows from (3.25), For 

Remarks 1:

The complete sample case results can be obtained on putting r = n and s = m.
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From (3.1),

Now

Moreover,

We can write (3.12) as

 is a consistent estimator of 

Hence,  and  are also consistent estimators of R(t )and ‘P’, respectively.

If we look at remark (2), we observe that the estimators of negative powers of  are used to prove the consistency
of  This justifies the estimation of negative powers of .

In order to obtain Bayes estimators of R(t) and ‘P’, in literature, authors first obtain the expression of these
quantities and then their Bayes estimators, say, posterior mean under SELF. In the present approach to obtain Bayes
estimators of R(t) and ‘P’ we made use of Bayes estimator of the pdf and one does not need their expression.
Moreover, we have established an interrelationship between these two estimation problems.

Simulation Studies: In order to validate the performance of the estimators under SELF with respect to the actual
reliability estimates obtained through numerical integration, we have simulated a sample of size r = n = 50 from (1.1) with

 = 2,  = 2 and  =1.

0.4173003, 0.9460239, 0.7186531, 0.9736477, 1.6545909, 1.1489930, 1.0387765, 0.8689265, 1.1750468, 0.9411219, 1.8013401,
1.1333229, 2.2251164, 0.8826638, 1.8679742, 1.2884515, 1.0713660, 1.4829736, 1.5310753, 0.7714249, 0.7771927, 1.0573936,
1.5314517, 0.8741688, 2.1261284, 1.1641412, 0.9074558, 1.3315983, 0.6891152, 1.5015916, 1.9824928, 1.2762304, 1.5224234,
0.7976915, 0.7174940, 1.0339409, 1.2862068, 0.9775802, 0.8620062, 1.1182395, 1.0568100, 0.9023865, 0.7227187, 1.9491991,
1.1022730, 1.6380632, 1.1811405, 1.7408185, 1.6126990, 0.9343715.
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Table 1:
p = 1 p = 2

 2.231829  0.4562096 5.070009 0.2119814

 0.08894753  0.003854207  1.852177  0.003489233

 0.02947368  0.02272727  0.3251993  0.3752806

Fig. 1: Prior and Posterior densities

Fig. 2: Graph of f(x; , , )  and 

Table 2:
t R(t)

0.30 0.993 0.995
0.40 0.978 0.984
0.50 0.951 0.962
0.60 0.909 0.926
0.70 0.850 0.875
0.80 0.777 0.808
0.90 0.692 0.727
1.00 0.600 0.637
1.10 0.507 0.544

Here, we have S  = 20.09153. For the case when priorr

parameters are µ = 5 and  = 6, we have plotted prior and
posterior densities in Fig. 1 and constructed Table 1.

In order  to compute values of R(t) and , we

assume that the data represents life spans of items in
hours. With respect to above sample and for same prior
parameters as above, computed values of R(t) and ,

over t=0.30(0.10)1.10 are given in Table 2.

For computing the value of  we have simulated

two samples from (1.1) of sizes r = n = 30 and s = m = 35,
respectively. First is with parameters  and

second is with  respectively.

X-Population:
1.1725308, 1.8200127, 1.7052567, 1.4018941, 1.2583337,
1.6616181, 0.9813064, 1.5846732, 0.5500817, 0.8015553,
1.4781880, 1.3155080, 0.9924352, 0.4397273, 1.0000568,
1.1561893, 0.7403056, 0.9018083, 0.5021047, 1.9817868,
1.4721579, 1.3098427, 1.4935193, 2.1591953, 0.8969304,
0.8221974, 1.5739064, 1.0102813, 0.5673100, 1.3246853.

Y-Population
1.1403903, 0.7555690, 1.2309668, 2.3932917, 1.2066033,
1.8399822, 1.3407853, 0.6030329, 1.1180712, 1.5327907,
1.5622690, 1.4313309, 1.6976184, 2.2411743, 0.7800085,
1.3023954, 1.0793686, 0.9517087, 1.4332955, 0.8087409,
0.7456061, 0.4338839, 1.3554415, 0.8024363, 1.0191814,
0.5005716, 0.6418640, 0.7757467, 0.6331233, 1.4079004,
1.1508947, 1.3903010, 1.4176388, 0.9870763, 1.2192468.

In the case when, prior parameters are  and

, respectively. For q=1, we get S  =13.50066,r

T =16.5051,s

We have shown under Remark (1), that  is a

consistent estimator of . In order to verify these

results, we have drawn a sample of sizes n = r = 30 from
(1.1), with . In Fig. 2, we have plotted 

and  simultaneously. It is clear from Fig. 2 that

both the curves overlap. This justifies the consistency
property of the estimator.

DISCUSSION

[15] obtained the classical and Bayesian methods of
parameter estimation for complete sample case. [16]
obtained the classical and Bayesian methods of parameter
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estimation under type II censoring. Here, we obtained 5. Constantine, K., M. Karson and S.K. Tse, 1986.
Bayes estimators of the powers of the , R(t) and ‘P’ Estimators of P(Y<X) in the  gamma case. Commun.
under type II censoring. Consideration was given to Statist. -Simul. Comp., 15: 365-388.
SELF. We also obtained expressions for the risks, 6. Enis, P. and S. Geisser, 1971. Estimation of the
posterior risks and Bayes risks of the powers of  and probability that Y<X. Jour.  Amer.  Statist. Assoc., 66:
R(t). Therefore we have extended previous research. 162-168.

In the literature, the researchers have dealt with the 7. Gradshteyn, I.S. and I.M. Ryzhik, 1980. Tables of
estimation of R(t) and ‘P’, separately. If we look at the Integrals, Series and  Products,  Academic Press,
proofs of Theorems 3 and 5, we observe that the Bayes London.
estimator of the sampled pdf is used to obtain the Bayes 8. Johnson, N.L., 1975. Letter to the editor.
estimators of R(t) and ‘P’, respectively. Technometrics, 17: 393.

With the help of Fig. 2, we justified the consistency 9. Kelly, G.D., J.A. Kelly and W.R. Schucany, 1976.
property of the estimators. Table 1 and 2 Shows that Efficient estimation of  P(Y<X)  in the exponential
estimated values are very close to actual values. case. Technometrics, 18: 359-360.

CONCLUSION Reliability And Analysis. John  Wiley  and Sons,

Bayes estimators of R(t) and ‘P’ are derived under 11. Moore, A.H. and J.E. Bilikam, 1978. Bayesian
SELF and Type II censoring scheme. We have established estimation of the parameters of  life  distribution and
interrelationship between the two estimation problems reliability from type II censored samples. IEEE Trans.
and extended the previous research. Moreover, in the Reliab., 27: 64-67.
present approach, one does not require the expressions of 12. Mudholkar, G.S. and D.K. Srivastava, 1993.
R(t) and ‘P’. Exponentiated  Weibull  family  for   analyzing
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