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Mesoscopic Circuit
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Abstract: In this paper we study the quantization of the energy spectrum of a mesoscopic circuit, analyzing the
semi classical-quantum correspondence between the modulus k  and a (q), which is solution of the Schrodinger2

m

equation of the mesoscopic circuit. The values of q which provides the quantum requirement for oscillatory
motion to be a  (q)  2q, so the term 2k  – 1 must be less than one.m

2

Key words: Energy spectrum  Mesoscopic circuit  Quantization

INTRODUCTION

In a series of articles and chapters [1-7], several authors have developed a theory of quantum electrical LC circuits,
that is, electrical systems described by two parameters: an inductance L, and a capacitance C, and also by the discrete
nature of  electric  charge  and the magnetic flux . Now, in a recent work [8] we have proposed a semiclassical theory
of quantum electrical circuits. The solution of the obtained differential equation is similar to that deduced for nonlinear
equation  of  the  pendulum  [9-12].  The  solution  is  given  in terms of the Jacobi elliptic functions sn(z, k) and cn(z,k).
The  semiclassical  theory of  quantum  LC  circuits [1] starts from the quantum Hamiltonian of the LC circuit [1-8, 15].
The resulting equations become:

(1)

where  = 1/LC,  = / . The equations above are considered, mathematically, as classical equations, but they include0 0
2

quantum effects, the quantized nature of electric charge through of the parameter /q  = .e 0

Base on this information the Hamiltonian (1) minus a constant can be put in the form:

(2)

where E is the energy; we define , then  which gives the generalized
momentum:

(3)
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For a conservative system of one degree of freedom the semiclassical quantization rule is given by the action
integral , such that p and q are the generalized momentum and coordinate, respectively. In order that the

wave function be single-valued, the quantization condition reduces to: 

I = n (1 + r/4) (4)

in particular r = 2 for oscillatory motion and r = 0 for rotational motion.

Energy Spectrum and Semi Classical-quantum Correspondence: For oscillatory motion of charge, from (3) and (4) we
have

where  = –  is the maximum amplitude; thus  such that  = (1 – cos ) is1 2 0 0 0
2

the total energy of the mesoscopic circuit, then:

(5)

Let sin( /2) = sin( /2)sin ,  [0, /2],, therefore:0

(6)

defining the modulus k  = sin  ( /2) =  /2 , k  [0,1], equation (6) is simplified to:2 2 2 2
0 0

(7)

where K( /2,k), E( /2,k) are the complete elliptic integrals of the first kind and second kind, respectively [13, 14]. In the
limit of  being very small, k  0, (7) becomes ; when , k  1, (7) is equivalent to0 0

2 2

.

The Schrödinger equation for the mesoscopic circuit is given by , which

by the change of variable  = 2z, takes the form:

(8)

Comparing with the standard Mathieu's equation , we obtain  and

. Since the wave function has the same value when  goes through 2  period, we impose the boundary

condition (2z + 2 ) = (2z) to the wave function (8). As solution of (8) are the even Mathieu function ce (z, q) and2n

se  (z, q), n = 0,1,2...2n+2
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In order to compare the quantum and the semiclassical energy spectrum, we observe the modulus k  and the values2

a  (q) so  and from the definition of q we get:m

a  (q) = 2q(2k  – 1). (9) 8. Torres-Silva, H., D. Torres-Cabezas and J. López-m
2

The expression (2k  – 1) = a (q)/2q implies a Engineering Disciplines (OJTED), 2(3): 1-6.2
m

correspondence  one-to-one  between  values  of k  and 9. Landau, L.D. and E.M. Lifschitz, 1991. Mecánica,2

a  (q). A more fundamental view of the correspondence Reverté, Barcelona.m

comes  from  the  study  of  the  values of q which 10. Belendez,  A.,  et  al.,  2007.  Rev.   Bras.   Ens.  Fis.,
provides  the  quantum  requirement  for  oscillatory 29: 645-648.
motion to be a  (q)  2q, so the term 2k  – 1 must be less 11. Ochs, K., 2011. Eur. J. Phys., 32: 479.m

2

than one. 12. Lara, M. and S. Ferrer, 2015. Eur. J. Phys., 36: 055040.
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