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Abstract: In this paper, Energy Balance Method (EBM) and Frequency-Amplitude Formulation (FAF) proposed
by He are used to obtain the behavior and frequency of the cantilever rotating beams. The application of

mathematics on aerodynamic showed m the beam attached to a rigid hub which rotates along the hub axis such
as helicopter blades. With simplifying some complicated parameters, vibration equation of the cantilever beam
has been solved by new mathematical methods. The convenience and effectiveness of the analytical solutions
have been verified by comparison of the results with Runge-Kutta 4™ order method. It is predictable that by
improving these methods, lots of complicated problems will solve.
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INTRODUCTION

of the
systems, especially vibration of aerodynamic systems
helicopter blades

Recently investigating the response

such as and airplane wings is
vital aspect m engieering. Because the skin panel of
these may experience structural
problems such as thermal buckling or panel flutters.

structures serious

So, studymng about them should be very carefully
without missing any parameter. We can assume the
helicopter blades as a cantilever rotating beam. For
airplane wing we have cantilever beams along longitudinal
axis of the wing and both free ends beams along vertical
direction of the axis.

In this paper, we solved the dynamic equation of a
cantilever rotating beam. The equation derived from this
problem is nonlinear. Solving equation with nonlinear
terms have been one of the most time-consuming and
difficult affairs among engineers. In recent years, much
attention has been done to the newly approximate
methods for solving nonlnear equations [1, 2]. Some of
them are, He’s Homotopy Perturbation Method (HPM)
[3, 6], Homotopy Analysis Method (HAM) [7-9], He’s
Parameter-Expanding Method [10, 11], He’s Variational
Iteration Method (VIM) [12-14], He’s Energy Balance
Method (EBM) [15-17], He’s Frequency-Amplitude
Formulation (FAF) [18-21] and etc.

T Y

Fig. 1. Cantilever beam diagram

The cantilever beam 13 shown in Fig. 1 attached to
the hub which 15 assumed to be a rigid disc with radius
R, mass M and rotating at an angular velocity g about
the Z-axis. The effect of torque 7 on the hub causes it to
rotate only. The X, ¥, Z is a system of fixed rectangular
Cartesian coordinate axes with origin at the center of the
hub. The x, y, z and x',y",z" are two sets of rectangular
Cartesian coordinate axes rotating with the hub with
common origin at the root of the beam. The setting
angle ¥ 1s rotation of the hub about longitude axis of
the beam. The beam is assumed to be initially straight
along the ' -axis clamped at its base to the hub surface,
having a uniform cross-sectional area A4,, flexural rigidity
EI constant length 1, mass m and mass density p. The
beam thickness 1s assumed to be small compared to its
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length so that the effects of shear deformation and rotary
mertia can be ignored.

The mathematical model used here is a special case
of equation introduced in the work of Hamdan and
El-Sinawi [22]. The system Lagrangian in former work is
a function of the beam transverse dimensionless
deflection w, which 1s a continuous function of the
spatial variable £ and time # this continuous Lagrangian
15 discretized usmng the assumed mode method as
w = w(HD(£). Where ®(£) is a mode shape deflection of
the beam and w(#) 15 the corresponding time modulation
modal coordinate. By substituting equation (1) in the
system Lagrangian equation the coupled single mode
ordmary differential equation of motion derived [23].
We performed a new format of special case equation up to
thurd order terms by mathematical derivation as below:

W+ 0y Sw + dyw e+ dpw” + dyw’ = 0, @
and the initial conditions are:
w(0)= A4, w(0)=0. (2)

Where 4 is the amplitude of the system.

The solution and frequencies of a cantilever rotating
beam obtained by applying Energy Balance Method
and Frequency-Amplitude Formulaton. Comparison
between results achieved from former methods with
numerical sclutions using Runge-Kutta 4® order, showed
the power and precious of these methods.

Solution Procedure: In this section, we will apply Energy
Balance Method and Frequency-Amplitude Formulation
to solve the nonlinear Eq. (1).

Energy Balance Method: Tn this method, variational
formulation for Eq. (1) expressed as below:

; 2

J(w):_[ flvb(lerlwz)erl—werﬁw‘l d. (3)
ol 2 2 4

Hamiltonian can be written in the form:

1., N @ o dy 4 o s dy oy
H=—w (1+d1w )-&-*W +—=w =——A"+——=A4".
2 2 4 2 4

(4)

Or,

s
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2 2
A O e d e
2 4 4
(5)

We use the following trial function to determine the
angular frequency w.

R(t)= %wz(n dlwz)

Wt = A cos(wt). (&)

Substituting Eq. (6) into Eq. (5) yields:

2
R(f)= %Aza)z sin?{ear X1+ dyd® cos2(car)) + %AZ cos2(ar)

2

+%A4 cos* (wr) — %AZ _h oy
(7
Collocation Eq. (7) at wt=n/ 4
o~ ’40)12 +3d, 4
EBM TN 2
202+ dp4%) )
Substituting Eq. (8) into Eq. (6) yields:
2 2
()A[ f1af 20,42 }
202+dA°) ©)

Frequency Amplitude Formulation: For solving Eq. (1)
with Frequency Amplitude Formulation, we use the trial
functions w,(f) 4 cost and w,(f) = 4 cos @i, which are the
solutions of the following linear equations, respectively.

W@ tw=0, @°=1 (10)

W (32w = 0, @y = 0. (11)

The residuals are:
_ 2 3 3 3 3
Rty =(—A+ o A+ dA")cost+(-2d)A” + drA7 Jo087 1,

(12)

and,

Ry(£)=(—der’ + 6y° A+ d L0 Y cos ¥+ (-2d L 65 + dpd Joos” ar.
(13)

We introduce two new residual variables R"l and ‘ﬁz
define as [18, 19].

. 7, /4
R = ij. 1 Rl(t)cos[Mszt, (14)
T % L
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and,

Ry (15)

1, /4

i .[)2 Ry(t)cos 2—”t 1.

b b

We can approximately determine @’ in the form,
~25 ~25

2Ry —0R

Ry =Ry

For the Eq. (1), by a simple calculation, we obtain:

(16)

(0]

P —4A+ 40 A+ 3d, A - 2d, 4
1~ s
8

a7

and,

P ~440° + 4oy A + 3dy 4 - 24, S0
2 - .
8

Applying Eq. (16), we have:

(18)

2 4w A+ 3dy A - 4o Aw® - 3dy A0
—4A0? = 2d, Sw? +44+2d 47

Its approximate frequency write as:

—bi‘\/b2 —4ac
Crar=NTT g

Where a, b and ¢ are as follows:

19

[0

(20)

a=—44-2d 4,

b=44+2d A4’ + 40> A+3d, A4,
_ 2, 3

¢ =—4ay’A-3dy A, @n

The periodic solution as follows:

w (f) = A cos wt, (22)

Where w is evaluated from equation (20).

According to Eq. (20), two various frequencies are
obtained that one of them is the main frequency apparent
through Egs. (10, 11). The main frequency distinguishes
via the coefficients of the proposed equation.

RESULTS

According to Eq. (20), two various frequencies are
obtained that one of them is the main frequency apparent
through Eqgs. (10) and (11). The main frequency
distinguishes via the coefficients of the proposed
equation. We illustrate these statements for two modes.
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Table 1: Values of variables in Eq. (1), for two modes
[N d,

1 1 1
0 1 1

Mode

N o=

Table 2: Comparison between present work with time marching solution

Mode 2 for t=10s

Mode 1 for t=35s

A EBM or FAF  Runge-Kutta  EBM or FAF Runge-Kutta
/18 0.052632240  0.052829036  0.012325325  0.015003762
/9 0.122602316  0.124664245  -0.341637273 -0.333579366
/6 0.221170789  0.230114050  -0.232445300 -0.240549178
/3 0.684382411  0.767884930  0.561231611  0.553621951

Deflection

15

Ampltude 1 0 Time(s)

Fig. 2: Transverse vibration of the cantilever beam with
EBM for first mode.

0-05 N V.
0 \\\\\\\“7 ”

15

Amplitude 1 0

Time(s)

Fig. 3: Transverse vibration of the cantilever beam with
FAF for second mode.

The values of parameters w,, d, and d, associated
with each of the calculation modes are shown in Table 1.
We should use alternatively negative and positive
symbols in Eq. (20), for the first and second modes.
To show the remarkable accuracy of the obtained result,
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Fig. 4 Comparison between EBM and FAF for frequency
versus amplitude

we compare the approximate periodic solutions with
Runge-Kutta 4™ order in Table 2. Because of extreme
agreement between EBM and FAF we put one column for
them m the table. The results for these methods are
exactly the same at least until 10® order. For example for
the variables of first mode at amplitude equal to 7/3 and
t=3s the EBM result for deflection of the cantilever beam
is 0.684382411994534 and for FAF result it is
0.684382411994537.

The behaviors of transverse vibration of the
cantilever beam obtained by EBM for first mode and FAF
for second mode are shown 1n Figs. 2 and 3, respectively.
In Fig. 4 the frequency versus amplitude compared
that

these two different approaches lead us to the similar

between the mentioned methods. It can visible

results for the vibration of the cantilever beams system.
CONCLUSIONS

In this paper, free vibration of special case of
nonlinear equation for cantilever rotating beam solved
with EBM and FAF. The frequency obtained with these
methods showed excellent agreement with each other. The
comparison of these methods with time marching solution
show agreeable results for low amplitude. Tt is obvious
that EBM and FAF are powerful and efficient techmque
for finding analytical solutions thus we can use them for
approximate for mechanical systems. However, further
needed to better understanding and
developing these methods on engineering problems

research 1s

especially mechanical affairs.
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