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The Solution of Flierl-Petviashivili Equation and its
Variants Using Dtm-Padé Technique

Shaher Momani and Vedat Suat Ertürk1 2

Department of Mathematics, The University of Jordan, Faculty of Science, Amman, 1194, Jordan1

Department of Mathematics, Faculty of Arts and Sciences, Ondokuz May s University,2

55139, Kurupelit, Samsun, Turkey

Abstract: A numerical method for solving the Flierl–Petviashivili (FP) equation and its variants is proposed.
The proposed scheme is based on differential transform method (DTM) and Padé approximants. The DTM-Padé
technique  introduces  an  alternative framework designed to overcome the difficulty of the singular point at
x = 0. The numerical results demonstrates the validity and applicability of the method and a comparison is made
with existing results.

Key words: Differential transform method  Flierl-Petviashivili equation  Padé approximants

INTRODUCTION to obtain a variational principle [10] and may employ the

Consider the standard Emden–Fowler equation of the [11-13] and series solution method [14]. The series
form solution method considered in Ref. [14] is also compared

(1.1) The Flierl-Petviashivili equation can be obtained

Where  f(x)  and  g(y)  are  some  given functions of However,  in  this paper, we will consider the following
x and y, respectively. For f(x) = 1 and g(y) = y , Eq. (1.1) is two variants of Flierl-Petviashivili equation [18]:n

the standard Lane-Emden equation that was used to
model the thermal behavior of a spherical cloud of gas
acting under the mutual attraction of its molecules [1-5] (1.2)
and  subject  to  the  classical laws of thermodynamics. and
For other special forms of g(y), the well-known
Lane–Emden equation was used to model several (1.3)
phenomena in mathematical physics and astrophysics
such as the theory of stellar structure, the thermal Where     the    boundary    condition    is   y( )  = 0
behavior of a spherical cloud of gas, isothermal gas for  variants  of  FP  equations  (1.2) and (1.3). Eqs. (1.2)
spheres and theory of thermionic currents. The Lane- and (1.3) was thoroughly investigated by Wazwaz [18]
Emden equation has recently been solved by means of using the Adomian decomposition method and Padé
Adomian’s decomposition method which provides a approximants.
convergent series solution [6], the quasilinearization The singularity behavior at x = 0 is a difficult element
method of Bellman and Kalaba [7], a piecewise in this type of equations. The motivation for presenting
linearization technique [8] based on the piecewise this work comes actually from the aim of introducing a
linearization of the Lane-Emden equation and the reliable framework that combines the powerful Padé
analytical solution of the resulting piecewise constant- approximants [19] and differential transform method
coefficients odes, the homotopy analysis method [9], a (DTM) established in [20] and used thoroughly in [18]
variational  approach which uses a semi-inverse method and the references therein.

Ritz technique to obtain approximate analytical solutions

with the homotopy perturbation method [15-17].

from (1.1) by setting f(x) = 1,  =  and g(y) = y + y .2
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The  differential  transform method was first applied (2.2)
in  the  engineering  domain by [20]. The DTM provides
an efficient explicit and numerical solution with high
accuracy, minimal calculations and avoidance of
physically unrealistic assumptions. However, DTM has
some drawbacks. By using DTM, we get a series solution,
in practice a trutncated series solution. This series
solution converges in a limited interval and outside it,
high errors are occurred. To overcome this drawback and
improve the accurancy in larger interval, we apply the
Padé approximants to the obtained series to handle the
boundary conitions at infinity. The DTM method together
with Padé approximants (DTM-Padé technique) extends
the domain of solution and give better accuracy and
better convergence than using DTM alone. This link is
used before with ordinary differential equations (see [18])
and partial differential equations (see [21]).

This  paper  is  organized  as  follows: In Section 2,
we describe the differential transform method and give a
brief discussion of Padé approximants. In Sections 3 and
4, the method is implemented to boundary value problems
(1.3) and (1.4), respectivelly and conclusion remarks are
presented in Section 5.

Differential Transform Method: The differential
transform method is a semi-numerical-analytic-technique
that formalizes Taylor series in a totally different manner.
With this technique, the given differential equation and
related boundary conditions are transformed into a
recurrence equation that finally leads to the solution of a
system of algebraic equations as coefficients of a power
series solution. This method is useful to obtain exact and
approximate solutions of linear and nonlinear differential
equations.  No  need to linearization or discretization,
large computational work and round-off errors are
avoided. It has been used to solve effectively, easily and
accurately  a  large  class  of  linear and nonlinear
problems with approximations. The method is well
addressed in [22-31]. The basic definitions of differential
transformation are introduced as follows:

Definition 2.1: If f(t) is analytic in the time domain T, then

(2.1)

Where k belongs to the set of non-negative integer,
denoted as the K-domain. Therefore, Eq. (2.1) can be
rewritten as

Where  F(k)  is  called  the spectrum of f(t) at t = t  in thei

K-domain.
If f(t) can be represented by Taylor’s series, then it

can be represented as

(2.3)

This equation is called the inverse of f(t), with the
symbol D denoting differential transform process. The
particular case of Eq. (2.3) when t  = 0 is referred to as thei

Maclaurin series of f(t) and is expressed as

Using  differential  transform,  a  differential  equation
in the domain of interest can be transformed to an
algebraic equation in the K-domain and f(t) can be
obtained by finite-term Taylor series expansion plus a
remainder, as

The  fundamental  mathematical  operations
performed by differential transform method are listed in
Table 1. 

In addition to the above operations, the following
theorem that can be deduced from Eqs.(2.2) and (2.3) is
given below:

Table 1: The fundamental operations of differential transform method

Time function Transformed function

w(t) =  u(t) ± v(t) W(k) = U(k) ± V(k)

w(t) = d u(t) / dtm m

w(t) = u(t)v(t)

w(t) = tm

w(t) = exp(t) W(k) = 1/k!
W(t) = sin( t + ) W(k) = ( /k!) sin (k /2 + )k

W(t) = cos( t + ) W(k) = ( /k!) cos (k /2 + )k
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Theorem

If f,(x ) = g (x)g (x)...g (x)g (x) then 1 2 m 1 m

(2.4) (2.11)

Padé Approximants: A Padé approximant is the ratio of
two  polynomials  constructed  from  the coefficients of
the Taylor series expansion of a function y(x). The [L/M]
Padé approximants to a function y(x) are given in Ref. [19] To  solve  these equations, one starts with Eqs.
as follows: (2.10), which is a set of linear equations for all the

(2.5) gives an explicit formula for the unknown p’s, which

Where P (x) is a polynomial of degree at most L and solve them directly and obtain Eq. (2.12) (see Ref.[19]),L

Q (x) is a polynomial of degree at most M. The formal where Eq. (2.12) holds and, if the lower index on a sumM

power series exceeds the upper, the sum is replaced by zero:

(2.6)

(2.7)

determine the coefficients of P (x) and Q (x) by theL M

equation.
Since we can obviously multiply the numerator and

denominator by constant and leave [L/M] unchanged, we
impose the normalization condition

Q (0) = 10. (2.8)M

Finally we require the that P (x) and Q (x) have noL M

common factors.

If we write the coefficient of P (x) and Q (x) asL M

(2.9)

Then by (2.8) and (2.9) we may multiply (3.3) by equation
Q (x), which linearizes the coefficient equations. We canM

write out (2.7) in more detail as (3.1)

(2.10)

unknown q’s. Once the q’s are known, then Eq. (2.11)

complete the solution.
If Eqs. (2.10) and (2.11) are nonsingular, then we can

(3.12)

To obtain diagonal Padé approximants of different
order like, [2/2], [4/4] or [6/6] we can use Mathematica.

First Generalization of the FP Equation: In this section
we will discuss the first generalized variant of the FP
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With the boundary conditions Y(0) = , Y(1) = 0. (3.4)

(3.2) When n = 1, Eqs.(3.1) and (3.3) become

For n = 1, Eq. (3.1) reduces to the standard FP (3.5)
equation  and one can see that the differential transform
of Eq. (3.1) can be evaluated by using the above and
operations as follows:

(3.3) (3.6)

From  the  boundary conditions given in Eq. (3.2) at Using  Eqs.  (3.4)  and  (3.6)  and  by  taking N = 17,
x = 0, the boundary conditions are transformed as follows: we get the following series solution

(3.7)

The  series  solution  (3.7)  is   used   to  obtain is  a /b ,  where  a   and  b   are  the  leading  coefficients
various  Padé   approximants   [2/2],   [4/4],   [6/6]  and of   the    numerator    and   denominator,   respectively.
[8/8].  Roots  of  the Padé approximants to the FP For n = 1, that is related to the FP equation, the table can
monopole   were  obtained.  The  roots  were  obtained be  found  in  [32],  hence we just summarize all results for
by using the limit of the Padé approximant [m/m] as x n  1.

8 8
m m
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Table 2: Roots of the Padé approximants monopole [32] ,n = 1 Table 4: Roots of the Padé approximants monopole ,n = 3

Roots Roots
------------------------------------------------------------------------- ------------------------------------------------------------------------

Degree Ref. [18] DTM (N = 17) Degree Ref. [18] DTM (N = 17)

[2/2] -1.5 -1.5 [2/2] 0.0 0.0
[4/4] -2.50746 -2.50746 [4/4] -2.197575908 -2.217927737
[6/6] -2.390278 -2.390278 [6/6] -1.918424398 -1.918424398
[8/8] -2.392214 -2.392214 [8/8] -1.848997181 -1.848997181

Table 3: Roots of the Padé approximants monopole ,n = 2

Roots
------------------------------------------------------------------------

Degree Ref. [18] DTM (N = 17)

[2/2] -2.0 -2.0
[4/4] -2.0 -2.0
[6/6] -2.0 -2.0
[8/8] -2.0 -2.0

For  n  =  2,  we  discard  the  complex   roots  and
other   real    roots   that   do   not   meet  physical
grounds. Continuing in the same manner, we obtained
Tables  2-5.  Table  5  shows that the roots of the
monopole   converge  to  -1  as  n   increases.  The
results in Tables 2-5 are in good agreement with the
results obtained in [18] using Adomian decomposition
method.

Table 5: Roots of the Padé approximants [8/8] monopole  for several values of n
[8/8] Roots [8/8] Roots
-------------------------------------------------------------- -----------------------------------------------------------------

N Ref. [18] DTM (N = 17) N Ref. [18] DTM (N = 17)
1 -2.392213866 -2.392213866 6 -1.000861533 -1.149086031
2 -2.0 -2.0 7 -1.000708285 -1.119364959
3 -1.848997181 -1.848997181 8 -1.000601615 -1.099345401
4 -1.286025892 -1.286025892 n -1.00 -1.00
5 -1.001101141 -1.197243010

Table 6: Roots of the Padé approximants [8/8] monopole  for several values of r
[8/8] Roots [8/8] Roots [8/8] Roots
---------------------------------------------- ------------------------------------------------- --------------------------------------------------

r Ref. [18] DTM (N = 17) r Ref. [18] DTM (N = 17) r Ref. [18] DTM (N = 17)
1 -2.39221386 -2.39221386 8 -13.7032879 -13.7032879 15 -8.065872112 -8.065872113
2 -4.71692095 -4.18730004 9 -13.1254951 -13.1254951 16 -6.054278105 -6.054278106
3 -8.66481910 -8.66481910 10 -13.1817438 -13.1817438 17 -4.225824659 -4.225824659
4 -16.5044406 -16.5044406 11 -3.17173988 -13.7173988 18 -3.445689828 -3.445689828
5 -47.0521025 -47.0521025 12 -14.7846216 -14.7846216 19 -3.009982510 -3.009982510
6 -20.9828920 -20.9828920 13 -16.7179134 -16.71791340 20 -2.409546162 -2.734318768
7 -15.4011414 -15.5011414 14 -20.9142364 -20.91425641 n -2.392213866 -2.392213866

Second Generalization of the FP Equation: In this section Taking differential transform of (3.8) and using the
we will discuss a second generalized variant of the FP fundamental operations of differential transform method,
equation we obtain the following recurence relation:

(3.8)

The boundary conditions are

(3.9)

For r = 1, Eq. (3.8) reduces to the standard FP
equation.  The  general  series solution for Eq. (3.8) is to From  the  boundary conditions given in Eq. (3.9) at
be constructed for all possible values of r  1. x = 0, the boundary conditions are transformed as follows:

(3.10)
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Y(0) = , Y(1) = 0. (3.11) 2. Chandrasekhar, S., 1967. Introduction to the Study of

Using Eqs. (3.10) and (3.11) and by taking N = 17, the
following series solution is obtained:

(3.12)

Which is exactly the same as in [18] by using the
Adomian decomposition method.

The series solution (3.12) is used to obtain various
Pad approximants [2/2], [4/4], [6/6] and [8/8]. Roots of the
Padé approximants to the FP monopole  were obtained.
The roots were obtained by using the limit of the Padé
approximant [m/m] as x  is a /b , where a  and b  are8 8 m m

the leading coefficients of the numerator and
denominator, respectively. The following table
summarizes the results for values of r = 1,2,...,20.

Table 6 shows that the roots exhibit a fast decrease
reaching a minimum -47.05210256 at r = 5, then followed
by a fast increase to converge to the starting value -
2.392213866 as shown above. Our results are in good
agreement with the results obtained in [18] using
Adomian decomposition method.

CONCLUSION

The DTM-Padé technique is an efficient method for
calculating approximate solutions for FP equation and its
variants. Due to the existence of singular point at x = 0,
the difficulty in type of equation can be overcomed using
this technique. The results show that this technique
increases efficiently the accuracy of approximate solution
and leads to convergence with a rate faster than using
DTM alone. The DTM-Padé technique can be used in
solving other types of ordinary differential equations with
singular coefficients. The use of Mathematica facilatates
the calculations of the DTM-Padé technique.
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