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Abstract: In this paper, we propose a new approach to solve the unsteady gas equation. We apply the 
Modified Laplace Decomposition Method (MLDM) coupled with Pade  ́approximation to compute a series 
solution of unsteady flow of gas through a porous medium. The proposed iterative scheme finds the 
solution without any discretization, linearization or restrictive assumptions. The nonlinear terms can be 
easily handled by the use of Adomian polynomials. The diagonal Pade´ approximants are used to analyze
the essential behavior of y(x) and to determine the initial slope y'(0). The proposed scheme avoids the 
complexity provided by using perturbation and other iterative techniques.
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INTRODUCTION

We consider the flow of gas through a semi-infinite
porous medium [1-3] initially filled with gas at a
uniform pressure p0≥0, at time t = 0, the pressure at the 
outflow face is suddenly reduced from p0 to p1≥0 (p1=0
is the case of diffusion into a vacuum) and is, thereafter, 
maintained at this lower pressure. The unsteady
isothermal flow of gas is described by a nonlinear
partial differential equation. The nonlinear partial
differential equation that describes the unsteady flow of 
gas through a semi-infinite porous medium has been 
derived by Muskat [4] in the form

2 2 P
(P ) (2 /k)

t
∂

∇ = Φµ
∂

(1)

where P is the pressure within porous medium, Φ the
porosity, µ the viscosity, k the permeability and t the
time. New variables were introduced by Kidder [2] and 
Davis [5] to transform the nonlinear partial differential 
equation (1) to the nonlinear ordinary differential
equation. The nonlinear ordinary differential equation 
due to Kidder [2] given by (unsteady gas equation)

// 2x
y (x) y(x) 0, 0 1

1 y
′+ = < α <

− α
(2)

The unsteady flow of gas through a porous medium
has been investigated by number of authors and
several techniques including decomp osition, variational

iteration using He’s polynomials  and Homotopy
perturbation methods have been used for the analysis of 
this problem, [6-8]. Khuri [9] proposed a Laplace
Decomposition Method (LDM) for the approximate
solution of a class of nonlinear ordinary differential 
equations. In 2006, Agadjanov [10] developed this 
method for the solution of Duffing equation. The
Laplace decomposition method (LDM) was proved to 
be compatible with the versatile nature of the physical 
problems and was applied to a wide class of functional 
equations; [11-16]. Recently a reliable modification of 
the Laplace decomposition algorithm has been done 
by Yasir [17]. The modified Laplace decomposition 
method is much easier compared with the Adomian 
decomposition method where huge complexities are
involved. The fact that MLDM solves nonlinear
problems without using any restricted linear highest-
ordered differential operator. It can be considered as a 
clear advantage of this technique over the Adomian 
decomposition method. It is worth mentioning that the 
MLDM is applied without any discretization, restrictive 
assumption or perturbation and is free from round off 
errors. The objectives of this paper are three-fold: first, 
to introduce the new analytical method for finding the 
analytical solution of unsteady flow of gas through 
porous medium which primarily lie in its ability to
avoid the unnecessary calculations of other iteration 
methods; second, our aim is to compare the results with 
solutions to the existing ones [6-8]; and third, to extend 
our previous approach proposed in [17] on semi-infinite
domain. To make the work more concise and to get a 
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better understanding of the solution behavior, the 
series solutions are replaced by the diagonal Pade´
approximants [19-29].

MODIFIED LAPLACE 
DECOMPOSITION METHOD (MLDM)

In order to elucidate the solution procedure of the 
modified Laplace decomposition method, we consider 
the following general form of second order nonlinear
ordinary differential equation with initial conditions is 
given by

1 2f b(x)f b (x)f g(y)′′ ′+ + = (3)

f(0) ,  f(0)′= α = β (4)

According to Laplace decomposition method [9, 
10], we apply Laplace transform (denoted throughout 
this paper by L) on both sides of Eq. (3):

2 1
1 2s L f s L b (x)f L b (x)f L g(y)′− α − β + + =               (5)

Using the differentiation property of Laplace
transform, we have

1 22 2 2

1 1
L f L g( y ) L b (x)f b (x)f

s s s s
α β ′= + + − +           (6)

The Laplace decomposition method [9, 10] admits
a solution in the form 

m
m 0

f f
∞

=

= ∑ (7)

The nonlinear term is decomposed as

m
m 0

g(y) A
∞

=

= ∑ (8)

where Am are Adomian polynomials of g0, g1, g2, g3,….,
gn and it can be calculated by the following formula
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Using Eq. (7) and Eq. (8) in Eq. (6) we get
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Matching both sides of Eq. (10), we have the
following relation;

0 2L f
s
β

= α +   (11)
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(12)

In general the recursive relation is given by

m 1 n 1 m 2 m2 2
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aking the inverse Laplace transform from both 
sides of Eq. (11-13), one obtains
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where H(x) represents the term arising from source
term and prescribe initial condition. The modified
Laplace decomposition method [17] suggests that the 
function H(x) defined above in (14) be decomposed 
into two parts, namely H0(x) and H1(x). Such that 

0 1H(x) H (x) H (x)= + (16)

he initial solution is important and the choice of 
Eq. (14) as the initial solution always leads to noise 
oscillation during the iteration procedure. Instead of the 
iteration procedure, Eqs. (14) and (15), we suggest the 
following modification 
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The solution through the modified Laplace
decomposition method highly depends upon the choice 
of H0(x) and H1(x).
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NUMERICAL APPLICATION

In this section, we apply the Modified Laplace 
Decomposition Method (MLDM) for finding the
analytical solution of the unsteady flow of gas through 
a porous medium. 

// 2x
y (x) y(x) 0, 0 1

1 y
′+ = < α <

− α
(18)

With conditions

x
y(0) 1, limy(x) 0

→∞
= =

where y′(0) = B<0, will be examined in this work. By 
applying the aforesaid method subject to the initial
conditions, we have 

31
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The inverse of Laplace transform implies that 

( )311 2 2
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−−  = + +   
(20)

Following the technique, if we assume an infinite
series solution of the form (7) we obtain
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Through the modified Laplace decomposition
method [17] the function H(η) can be written as 

0 1H(x) 1 Bx H (x) H(x)= + = + (22)

By this consideration, we first set modified
recursive relations in the form
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In the above equation Am(x) are the Adomian 
polynomials [18]. For convenience, we list below the 
first few Adomian polynomials Am(x)
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Using above polynomial, we calculate other
components of y(x)
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The series solution is given by
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PADÉ APPROXIMANTS

Padé approximants constitute the best
approximation of a function by a rational function of a 
given order. Padé approximants often provide better 
approximation of a function than its Taylor series and
they may still work in cases in which the Taylor series 
does not converge. For these reasons, Padé
approximants are used extensively in computer
calculations and it is now well known that these
approximants have the advantage to manipulate
polynomial approximation into the rational functions of 
polynomials. Through such manipulation, we can gain
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Table 1: Exhibits the initial slopes B = y′(0) for various values of α
α B[2/2] = y′(0) B[3/3] = y′(0)
0.1 -3.556558821 -1.957208953
0.2 -2.441894334 -1.786475516
0.3 -1.928338405 -1.478270843
0.4 -1.606856838 -1.231801809
0.5 -1.373178096 -1.025529704
0.6 -1.185519607 -0.8400346085
0.7 -1.021411309 -0.6612047893
0.8 -0.8633400217 -0.4776697286
0.9 -0.6844600642 -0.2772628386

Table 2: Exhibits the values of y(x) for α = 0.5 for x = 0.1 to 1.0
x  y kidder y[2/2] y[3/3]

0.1 0.8816588283 0.8633060641 0.8979167028
0.2 0.7663076781 0.7301262261 0.7985228199
0.3 0.6565379995 0.6033054140 0.7041129703
0.4 0.5544024032 0.4848898717 0.6165037901
0.5 0.4613650295 0.3761603869 0.5370533796
0.6 0.3783109315 0.2777311628 0.4665625669
0.7 0.3055976546 0.1896843371 0.4062426033
0.8 0.2431325473 0.1117105165 0.3560801699
0.9 0.1904623681 0.04323673236 0.3179966614
1.0 0.1587689826 0.01646750847 0.2900255005

more information about the mathematical behavior of 
the solution. In addition, power series are not useful for 
large values of a variable, say η→∞, which can be 
attributed to the possibility of the radius of convergence 
not being sufficiently large to contain the boundaries of 
the domain. To provide an effective tool that can handle 
boundary value problems on an infinite or semi-infinite
domain, it is therefore essential to combine the series 
solution, which is obtained by the iteration method or 
any other series solution method, with the Padé
approximants.

The diagonal Pade´ approximants [19-29] can be 
applied to investigate the mathematical behavior of the 
solution y(x) to determine the initial slope y′(0).

The above tables clearly reveal that present
solution method namely MLDM shows excellent
agreement with the existing solutions in literature [6-8].
This analysis shows that MLDM suits for Boundary 
layer flow problems.

CONCLUSION

This paper presents a Modified Laplace
Decomposition method, the MLDM, that can be
employed to solve Unsteady gas equation. The
proposed algorithm’s ability to solve nonlinear
problems without the use of restricted linear highest-
ordered differential operator is evidence of its clear 
advantage over the Adomian decomposition method. It
may be concluded that the MLDM is very powerful and 

efficient in finding the analytical solutions for a wide 
class of differential equations. The method gives more 
realistic series solutions that converge very rapidly in
physical problems. Comparison of the present solution 
is made with the existing solution [6-8]. An excellent 
agreement between the present and existing solutions is 
achieved.
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